Skip to main content
Log in

Electrochemical and dissolution behavior of the Ti-alloy VT-9 in H2SO4 solution in the presence of the organic inhibitor (2-phenyl-4-[(E)-1-(4-solphanylanilino)methylyden]-1,3-oxazole-5(4H)-one

  • Article
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

This investigation potentiodynamically evaluates the corrosion behavior of a high strength titanium alloy, VT-9, in 4 M sulfuric acid solution containing different concentrations (10, 20, 30 ppm) of the organic inhibitor, 2-phenyl-4-[(E)-1-(4-sulfanylanilino)methylidene]-1,3-oxazole-5(4H)-one (L-SH), at different temperatures (293, 303 and 313 ± 1 K). The open circuit potential values noted before and after each experiment varied appreciably with time. These values, in the presence of L-SH, were negative before polarization, but after completion of the experiment turned positive and remained stable over a long period of time. The cathodic current density values increased with increasing cathodic potential (more negative). The corrosion potential (Ecorr) increased remarkably with the addition of L-SH. The corrosion current densities (Icorr), critical current density (Icr), and passive current density (Ip) all decreased when L-SH was used. However, only the decrease in the Icorr with increasing amounts of inhibitor was significant compared to that of Icr and Ip. L-SH expanded the range of the passive potential. SEM micrographs and open circuit potential measurements revealed the formation of a uniform and protective film on the alloy surface in the presence of L-SH, which acted as an efficient inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Barron, Light Metal Age. 14 (1956) 16.

    CAS  Google Scholar 

  2. V.S. Ivins, Power Eng. 69 (1956) 52.

    Google Scholar 

  3. E. Leitao, R.A. Silva, M.A. Barbosa, Corros. Sci. 3 (1997) 337.

    Google Scholar 

  4. K. Elagli, M. Traisnel, H.F. Hildebrand, Electrochim. Acta 38 (1993) 1769.

    CAS  Google Scholar 

  5. Z. Han, H. Zhao, X.F. Chen, H.C. Lin, Mat. Sci. Eng. A-Struct. 277 (2000) 38.

    Google Scholar 

  6. R.S. Glass, Y. Ki Hong, Electrochim. Acta 29 (1984) 1465.

    CAS  Google Scholar 

  7. M.J. Mandry, G.J. Rosenblatt, J. Electrochem. Soc. 106 (1959) 755.

    Google Scholar 

  8. I. Gurrappa, Mater. Charac. 51 (2003) 131.

    CAS  Google Scholar 

  9. D.W. Deberry, G.R. Peyton, W.S. Clark, Corrosion. 40 (1981) 250.

    Google Scholar 

  10. E.E. Ebenso, Mater. Chem. Phys. 71 (2002) 62.

    Google Scholar 

  11. H. Ashassi,- Sorkhabi, S.A. Nabavi-Amri, Acta Chim. Slov. 47 (2000) 587.

    Google Scholar 

  12. E.E. Oguzie, C. Unaegbu, C.E. Ogukwe, B.N. Okolue, A.I. Onuchukwu, Mater. Chem. Phys. 84 (2000) 364.

    Google Scholar 

  13. E.S. Ferreira, C. Giacomelli, F.C. Gicomelli, A. Spinelli, Mater. Chem. Phys. 83 (2004) 129.

    CAS  Google Scholar 

  14. I. Lukovists, E. Kalman, F. Zuchi, Corrosion 57 (2001) 3.

    Google Scholar 

  15. N. Hackerman, E.L. Cook, J. Electrochem. Soc. 97 (1950) 2.

    Google Scholar 

  16. E. Ahlberg, M. Friel, Electrochim. Acta 34 (1989) 190.

    Google Scholar 

  17. A.P. Brynza, L.I. Gerasyutina, J. Appl. Chem. 35 (1962) 660.

    Google Scholar 

  18. L.I. Gerasyutina, A.P. Brynza, J. Appl. Chem. 368 (1963) 2132.

    Google Scholar 

  19. J.A. Petit, G. Chatainier, F. Dabost, Corros. Sci. 21 (1981) 279.

    CAS  Google Scholar 

  20. V.B. Singh, S.M.A. Hosseini, Corros. Sci. 34 (1993) 1723.

    CAS  Google Scholar 

  21. V.B. Singh, S.M.A. Hosseini, J. Appl. Electrochem. 24 (1993) 250.

    Google Scholar 

  22. A.M. Al-Mayouf, A.A. AL-Swayih, N.A. Al-Mobarak, A.S. Al-Jabab, Mater. Chem. Phys. 86 (2004) 320.

    CAS  Google Scholar 

  23. S.M.A. Hosseini, V.B. Singh, Mater. Chem. Phys. 33 (1993) 63.

    CAS  Google Scholar 

  24. S. Bilgic, M. Sahin, Mater. Chem. Phys. 70 (2001) 290.

    CAS  Google Scholar 

  25. E.E. Ebenso, Mater. Chem. Phys. 71 (2002) 62.

    Google Scholar 

  26. A.M. Al-Mayouf, Corros. Prevention Control 6 (1996) 70.

    Google Scholar 

  27. M.P. Soriaga, A.T. Hubbard, J. Electroanal. Chem. 165 (1984) 79.

    Google Scholar 

  28. M.T. Makhlouf, G.K. Gomma, M.H. Wahdan, Z.H. Khali, Chem. Phys. 40 (1995) 119.

    CAS  Google Scholar 

  29. A. Fragnani, G. Trabanelli, Corrosion 55 (1999) 653.

    Google Scholar 

  30. G.K. Gomma, M.H. Wahdan, Bull. Chem. Soc. Jpn. 67 (1994).

  31. D.J. Shaw, Introduction to Colloid and Surface Chemistry, Butterworth, London, 1966.

    Google Scholar 

  32. D. Schlain, C.B. Kenahan, Corrosion 14 (1958) 405t.

    CAS  Google Scholar 

  33. G.W. Poling, J. Electrochem. Soc. 114 (1967) 1209.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. A. Hosseini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseini, S.M.A., Amiri, M. Electrochemical and dissolution behavior of the Ti-alloy VT-9 in H2SO4 solution in the presence of the organic inhibitor (2-phenyl-4-[(E)-1-(4-solphanylanilino)methylyden]-1,3-oxazole-5(4H)-one. JICS 4, 451–458 (2007). https://doi.org/10.1007/BF03247232

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03247232

Keywords

Navigation