Skip to main content
Log in

Fabrication, characterization and enhanced sensing performance of graphene-TiO2 gas sensor device

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene-TiO2 nanocomposite layers (G-TiO2-NCLs) were prepared using sol–gel method along with spin coating deposition and applied for detection of CO2 gas. The physicochemical properties of G-TiO2-NCLs gas sensors were determined by X-Ray diffraction (XRD), ultra-violet visible spectroscopy (UV–Vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared-spectroscopy (FT-IR). The gas sensing properties of the prepared G-TiO2-NCLs was successfully demonstrated by detection of CO2 gas at different operating temperatures and gas concentrations. Both pristine TiO2 and G-TiO2-NCLs sensors showed a faster response at operating temperature of 200 °C. It was found that G-TiO2 gas sensors show higher response toward sensing CO2 gas compared with pristine TiO2 sensors at optimum temperature. The enhancement in the gas sensing performance of G-TiO2-NCLs can be ascribed to the introducing of graphene into the TiO2 matrix. The response of G-TiO2-NCLs gas sensors was maximum (1.34) when 0.001 g graphene was incorporated into the TiO2 matrix at 200 °C as an optimum operating temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. R. Miller, S. A. Akbar, P. A. Morris, Sens. Actuators, B 204, 250 (2014).

    Article  Google Scholar 

  2. S. M. Mohammad, Z. Hassan, R. A. Talib, N. M. Ahmed, M. A. Al-Azawi, N. M. Abd-Alghafour, C. W. Chin, N. H. Al-Hardan, J. Mater. Sci. - Mater. Electron. 27, 9461 (2016).

  3. A. Esfandiar, S. Ghasemi, A. Irajizad, O. Akhavan, M.R. Gholami, Int. J. Hydrogen Energy 37, 15423 (2012)

    Article  Google Scholar 

  4. D. Meng, T. Yamazaki, T. Kikuta, Sens. Actuators, B 190, 838 (2014).

    Article  Google Scholar 

  5. Q. Gao, W. Zeng, R. Miao, J. Mater, Sci. - Mater. Electron 27, 9410 (2016)

    Google Scholar 

  6. A. Wisitsoraat, A. Tuantranont, E. Comini, G. Sberveglieri, W. Wlodarski, Thin Solid Films 517, 2775 (2009)

    Article  Google Scholar 

  7. B. Karunagaran, P. Uthirakumar, S. J. Chung, S. Velumani, E. K. Suh,. Mater. Charact. 58, 680 (2007).

  8. Y. Kwon, H. Kim, S. Lee, I. J. Chin, T. Y. Seong, W. I. Lee, C. Lee, Sens. Actuators, B 173, 441 (2012).

    Article  Google Scholar 

  9. S. Basu, P. Bhattacharyya, Sens. Actuators, B 173, 1 (2012).

    Article  Google Scholar 

  10. H. D. Jang, S. K. Kim, H. Chang, E. H. Jo, K. M. Roh, J. H. Choi, J. W. Choi, Aerosol Sci. Technol. 49, 538 (2015).

  11. X. Li, Y. Zhao, X. Wang, J. Wang, A. M. Gaskov, S. A. Akbar, Sens. Actuators, B 230, 330 (2016).

    Article  Google Scholar 

  12. E.H. Song, Y.F. Zhu, Nanosci. Nanotechnol. Lett 5, 198 (2013)

    Article  Google Scholar 

  13. G. Peng, J.E. Ellis, G. Xu, X. Xu, A. Star, ACS Appl. Mater. Interfaces 8, 7403 (2016)

    Article  Google Scholar 

  14. D. Acharyya, P. Bhattacharyya, IEEE Electron Device Lett. 37, 656 (2016).

  15. A.A. Ashkarran, B. Mohammadi, Appl. Surf. Sci 342, 112 (2015)

    Article  Google Scholar 

  16. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 7, 1876 (2011)

    Article  Google Scholar 

  17. Q. Wang, X. Guo, L. Cai, Y. Cao, L. Gan, S. Liu, Z. Wang, H. Zhang, L. Li, Chem. Sci. 2, 1860 (2011).

  18. M.A. Abdullah, F.K. Chong, J. Hazard. Mater 176, 451 (2010)

    Article  Google Scholar 

  19. M. Abdennouri, R. Elmoubarki, A. Elmhammedi, A. Galadi, M. Baalala, M. Bensitel, A. Boussaoud, Y. El Hafiane, A. Smith, N. Barka, Journal of Materials and Environmental Science 4, 953 (2013)

    Google Scholar 

  20. W. Y. Yan, Q. Zhou, X. Chen, X. J. Huang, Y. C. Wu, Sens. Actuators, B 230, 761 (2016).

    Article  Google Scholar 

  21. A.J. Wang, W. Yu, Y. Fang, Y. Song, D. Jia, L. Long, M.P. Cifuentes, M.G. Humphreye, C. Zhang, Carbon 9, 130 (2015)

    Article  Google Scholar 

  22. A.A. Ashkarran, J. Cluster Sci 22, 233 (2011)

    Article  Google Scholar 

  23. 23. J.J. Zhang, Y. H. Wu, J. Y. Mei, G. P. Zheng, T. T. Yan, X. C. Zheng, P. Liua, X.X, Guan. Photochem. Photobiol. Sci 15, 1012 (2016)

  24. O. Akhavan, Carbon 81, 158 (2015)

    Article  Google Scholar 

  25. J. Hong, M. K. Park, E. J. Lee, D. Lee, D. S. Hwang, S. Ryua, Sci Rep. 3 2700 (2013).

  26. A.V. Dolbin, M.V. Khlistyuck, V.B. Esel’son, V.G. Gavrilko, N.A. Vinnikov, R.M. Basnukaeva, Low. Temp. Phys 42, 57 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Ashkarran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, M.T., Ashkarran, A.A. Fabrication, characterization and enhanced sensing performance of graphene-TiO2 gas sensor device. J Mater Sci: Mater Electron 28, 9435–9441 (2017). https://doi.org/10.1007/s10854-017-6685-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6685-0

Keywords

Navigation