Skip to main content
Log in

Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Titania (TiO2) nanoparticles (NP’s) have been prepared by solvothermal and sol–gel techniques using different surfactants such as acetic acid (AA), oleylamine (OM), and AA + OM. The solution was thermally treated at growth temperature 180 °C in solvothermal method. TiO2 powder, prepared using both methods, was subjected to post heat treatment at 550 and 950 °C. The effect of surfactants on the morphology of TiO2 NP’s was studied by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The structural and thermal properties of titania NP’s are investigated by means of X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, and differential scanning calorimetry (TGA/DSC). TEM and FESEM images illustrated various shapes of titania NP’s such as irregular spherical, rounded rectangular, truncated rhombic, oval, and rod-like structure in presence of different surfactants. Moreover, TiO2 particles prepared by sol–gel method were almost 40 times greater than those prepared by solvothermal method. In addition to the improvement in the crystallinity, thermal stability has been enhanced due to consolidation of individual particles at higher annealing temperature in solvothermal technique. Furthermore, a reduction in the degradation temperature and phase transformation of TiO2 NP’s were conspicuously corroborated after post-heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Dastan, P.U. Londhe, N.B. Chaure, J. Mater. Sci: Mater. Electron 25(34), 73 (2014)

    Google Scholar 

  2. D. Cao-Thang, N. Thanh-Dinh, K. Freddy, D. Trong-On, ACS Nano 3(11), 3737 (2009)

    Article  Google Scholar 

  3. D. Dastan, J. Atomic Mol. Condens. Nano Phys 2(2), 109 (2015)

    Google Scholar 

  4. R. Roman, R.L. Edson, J. Am. Ceram. Soc. 96(1), 96 (2013)

    Article  Google Scholar 

  5. D. Dastan, S.L. Panahi, N.B. Chaure, J. Mater. Sci: Mater. Electron. 27, 12291 (2016)

    Google Scholar 

  6. R.G. Thomas, C. Matteo, P. Taejong, M. Filippo, T.W. Ralph, F. Paolo, B.M. Christopher, J. Am. Chem. Soc. 134, 6751 (2012)

    Article  Google Scholar 

  7. D. Dastan, S.L. Panahi, A.P. Yengantiwar, A.G. Banpurkar, Adv. Sci. Lett. 22(4), 950 (2016)

    Article  Google Scholar 

  8. D. Dastan, N.B. Chaure, J. Mater. Mech. Manuf. 2(1), 21 (2014)

    Google Scholar 

  9. D. Dastan, N. Chaure, M. Kartha, J. Mater. Sci.: Mater. Electron. 28, 7784 (2017)

    Google Scholar 

  10. M. Madani, K. Omri, N. Fattah, A. Ghorbal, X. Portier, J. Mater. Sci: Mater. Electron 28, 12977 (2017)

    Google Scholar 

  11. M. Riazian, A. Bahari, Pramana, J. Phys. (PRAMANA) 78(2), 319 (2012)

    Article  ADS  Google Scholar 

  12. D. Dastan, S.W. Gosavi, N.B. Chaure, Macromol. Symp 347, 81 (2015)

    Article  Google Scholar 

  13. D. Dastan, A. Banpurkar, J. Mater. Sci: Mater. Electron 28, 3851 (2017)

    Google Scholar 

  14. M.R. Niazi, R. Li, E.Q. Li, A.R. Kirmani, M. Abdelsamie, Q. Wang, W. Pan, M.M. Payne, J.E. Anthony, D.-M. Smilgies, S.T. Thoroddsen, E.P. Giannelis, A. Amassian, Nat. Commun. (2015). doi:10.1038/ncomms9598

    Google Scholar 

  15. S.L. Panahi, D. Dastan, N.B. Chaure, Adv. Sci. Lett. 22(4), 941 (2016)

    Article  Google Scholar 

  16. M. Sobhani-Nasab, A. Rangraz-Jeddy, M. Avanes, Salavati-Niasari, J. Mater. Sci: Mater. Electron 26, 9552 (2015)

    Google Scholar 

  17. N. Bahari, M. Mirnia, Noori, Int. J. Sci. Innov. Discov. I.J.S.I.D 2, 213 (2012)

    Google Scholar 

  18. S.M. Sobhani-Nasab, M. Hosseinpour-Mashkani, S. Salavati-Niasari, Bagheri, J. Clust. Sci 26, 1305 (2015)

    Article  Google Scholar 

  19. R. Allafchiana, S.A.H. Jalali, R. Amiri, Sh. Shahabadi, Appl. Surf. Sci. 385, 506 (2016)

    Article  ADS  Google Scholar 

  20. M. Maddahfar, M. Ramezani, M. Sadeghi, A. Sobhani-Nasab, J. Mater. Sci: Mater. Electron. 26, 7745 (2015)

    Google Scholar 

  21. R. Grayeli Korpi, Sahare Rezaee, C. Luna, S. Talu, A. Arman, A. Ahmadpourian, Results Phys. 7, 3349 (2017)

    Article  ADS  Google Scholar 

  22. M. Dostani, A.H. Kianfar, M.M. Momeni, J. Mater. Sci: Mater. Electron. 28, 633 (2017)

    Google Scholar 

  23. M. Nakhae, A. Bahari, J. Mater. Sci: Mater. Electron. 27(6), 5899 (2016)

    Google Scholar 

  24. H. Kianfar, M. Dostani, J. Mater. Sci: Mater. Electron. 28, 7353 (2017)

    Google Scholar 

  25. S. Abbasi, S.M. Zebarjad, S.H. Noie Baghban, Engineering 5, 207 (2013)

    Article  Google Scholar 

  26. S. Abbasi, S.M. Zebarjad, S.H. Noie Baghban, A. Youssefi, M.-S. Ekrami-Kakhki, J. Therm. Anal. Calorim. (2015). doi:10.1007/s10973-015-4878-4

    Google Scholar 

  27. N. Sh. E. Godlisten, V.Q. Gideon, N.K. Dang, H. You, H. Sh. Young, K. Askwar, T.K. Jong-Kil, Hee, Powder Technol 217, 489 (2012)

    Article  Google Scholar 

  28. M. Molamohammadi, C. Luna, A. Aram, Sh.. Solaymani, A. Boochani, A. Ahmadpourian, A. Shafiekhani, J. Mater. Sci: Mater. Electron. (2015). doi:10.1007/s10854-015-3294-7

    Google Scholar 

  29. K. Omria, L.El Mir, Superlattices Microstruct. 70, 24 (2014)

    Article  ADS  Google Scholar 

  30. M.R. Hantehzadeh, M. Amou Amouha, S. Solaymani, T. Osati, B. Ghobadi, J. Fusion Energ 32, 622 (2013)

    Article  Google Scholar 

  31. A. Zavarian, S. Țălu, F. Hafezi, A. Achour, C. Luna, S. Naderi, M. Mardani, A. Arman, A. Ahmadpourian, J. Mater. Sci: Mater. Electron. (2017). doi:10.1007/s10854-017-7410-8

    Google Scholar 

  32. K. Omri, O.M. Lemine, L.El Mir, Ceram. Int. 43, 6585 (2017)

    Article  Google Scholar 

  33. S. Talu, M. Bramowicz, S. Kulesza, Sh.. Solaymani, A. Ghaderi, L. Dejam, S.M. Elahi, A. Boochani, Superlattices Microstruct. 93, 109 (2016)

    Article  ADS  Google Scholar 

  34. N. Bahari, Noori, J. Eng. Technol. Res. 3(8), 264 (2011)

    Google Scholar 

  35. R.D. Khataee, Y. Cheshmeh Soltani, M. Hanifehpour, H. Safarpour, Gh. Ranjbar, S.W. Joo, Ind. Eng. Chem. Res. 53, 1924 (2014)

  36. E. Karimzadeh, A. Arman, B. Astinchap, A. Ahmadpourian, B. Safibonab, A. Boochani,, Eur. J. Sci. Res. 111 4), 491(2013)

  37. K. Tarek, F. Armin, R. Lars, D. Ralf, W.B. Detlef, Chem. Mater 22, 2050(2010)

  38. R. Ghorbani-Vaghei, J. Mahmoodi, A. Shahriari, Y. Maghbooli, Appl. Organometal. Chem. (2017). doi: 10.1002/aoe.3812

  39. M. Samadi, H. Asghari Shivaee, M. Zanetti, A. Pourjavadi, A. Moshfegh, J. Mol. Catal. A: Chem 395, 42(2012)

  40. S. Farhanian, M. Hatami, J. Therm. Anal. Calorim. (2017). doi: 10.1007/s10973-017-6630-8

  41. S. Sohrabi, S. Dehghanpour, M. Ghalkhani, Chem. Cat. Chem 8, 2356(2016)

  42. M. Samadi, H. Asghari Shivaee, A. Pourjavadi, A.Z. Moshfegh, Appl. Catal. A: Gen 466, 153(2013)

  43. M. Hatami, N. Djafarzadeh, H. Hasanabadi, Adv. Polym. Technol. (2017). doi: 10.1002/adv.21842

  44. H. Md. Nasim, M.G. Betar, J. Sh. Sh-H. Nisarg, T.H. Yang, Paula, Nano Lett. 13, 4610(2013)

  45. M.S. Kh., M. Kamal, T.A. El-Kh. Rafat, A.M. Tarek, A.E. Hatem, Ahmed, Powder Technol 245, 156(2013)

  46. M. Samadi, A. Pourjavadi, A.Z. Moshfegh, Appl. Surf. Sci 298, 147(2014)

  47. K.E. Saisy, K.K. Suma, J. Rani, Polym. Degrad. Stab 97, 615(2012)

  48. Ch.. Wei-Lun, S. Hung-Wei, Ch.. Wen-Chang, Eur. Polym. J 45, 2749(2009)

  49. P.S.Dipti, J. Naresh, K. Rohit, R. Sakthivel, P. Sony, D. Trupti, K. Jayasankar, S.M. Partha, T. Ashish, J. Photochem. Photobiol. B: Biol. 140, 69(2014)

  50. M. Ghalkhani, J. Beheshtian, M. Salehi, Mater. Sci. Eng. C 69, 1345(2016)

  51. L. Muhammad-Sadeeq, Z. Cheng, Y. Yinxiang, W. Minghao, W. Qili, L. Mingmei, T. Xihong, Yexiang, J. Power Sour. 272, 946(2014)

  52. M. Ghalkhani, S. Maghsoudi, J. Mater. Sci: Mater. Electron. 28, 13665(2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Dastan.

Ethics declarations

Conflict of interest

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastan, D. Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel. Appl. Phys. A 123, 699 (2017). https://doi.org/10.1007/s00339-017-1309-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1309-3

Navigation