Skip to main content

Advertisement

Log in

Scalable synthesis and characterization of free-standing supercapacitor electrode using natural wood as a green substrate to support rod-shaped polyaniline

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Natural wood slice was used as a green substrate to support rod-shaped polyaniline via a scalable easily-operated immersion–oxidative polymerization–freeze drying pathway. The scanning electron microscopy observations show that the wood surface was densely covered with plentiful polyaniline nanorods with diameters of 31–72 nm and lengths of 240–450 nm. The analysis of Fourier transform infrared spectroscopy provides further evidence of polyaniline coating onto the wood substrate. Moreover, the analysis of X-ray photoelectron spectroscopy indicates a strong hydrogen bonding between the nitrogen lone pairs \((\ddot{\text{N}})\) of polyaniline and the −OH groups of wood, which plays an important role in the interface bonding. This core–shell composite can serve as a free-standing supercapacitor electrode, which shows a high specific capacitance of 304 F g−1 at 0.1 A g−1, a high coulombic efficiency of 93–100 %, and a moderate cyclic stability with a capacitance retention of 72.3 % after 5000 cycles. These make the natural wood a good alternative green substrate to develop novel eco-friendly energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.M. Perez-Madrigal, F. Estrany, E. Armelin, D.D. Diaz, C. Aleman, J. Mater. Chem. A 4, 1792 (2016)

    Article  Google Scholar 

  2. G.A. Snook, P. Kao, A.S. Best, J. Power Sour. 196, 1 (2011)

    Article  Google Scholar 

  3. C. Xia, W. Chen, X. Wang, M.N. Hedhili, N. Wei, H.N. Alshareef, Adv. Energy Mater. 5, 1401805 (2015)

    Article  Google Scholar 

  4. T.A. Skotheim, Handbook of conducting polymers (CRC Press, Florida, 1997)

    Google Scholar 

  5. T. Chen, J. Qiu, K. Zhu, J. Li, J. Mater. Sci: Mater. Electron. 26, 3730 (2015)

    Google Scholar 

  6. K.M. Molapo, P.M. Ndangili, R.F. Ajayi, G. Mbambisa, S.M. Mailu, N. Njomo, M. Masikini, P. Baker, E.I. Iwuoha, Int. J. Electrocheml. Sci. 7, 11859 (2012)

    Google Scholar 

  7. J. Stejskal, R. Gilbert, Pure Appl. Chem. 74, 857 (2002)

    Article  Google Scholar 

  8. H. Jiu, C. Huang, L. Zhang, J. Chang, H. Jiao, S. Zhang, W.B. Jia, J. Mater. Sci Mater. Electron. 26, 8386 (2015)

    Article  Google Scholar 

  9. N.V. Blinova, J. Stejskal, M. Trchová, J. Prokeš, M. Omastová, Eur. Polym. J. 43, 2331 (2007)

    Article  Google Scholar 

  10. Y. Ji, C. Qin, H. Niu, L. Sun, Z. Jin, X. Bai, Dyes Pigm. 117, 72 (2015)

    Article  Google Scholar 

  11. X. Shi, Y. Hu, F. Fu, J. Zhou, Y. Wang, L. Chen, H. Zhang, J. Li, X. Wang, L. Zhang, J. Mater. Chem. A 2, 7669 (2014)

    Article  Google Scholar 

  12. G.-F. Yu, X. Yan, M. Yu, M.-Y. Jia, W. Pan, X.-X. He, W.-P. Han, Z.-M. Zhang, L.-M. Yu, Y.-Z. Long, Nanoscale 8, 2944 (2016)

    Article  Google Scholar 

  13. G. Illing, K. Hellgardt, R. Wakeman, A. Jungbauer, J. Membrane Sci. 184, 69 (2001)

    Article  Google Scholar 

  14. G. Wang, J. Peng, L. Zhang, J. Zhang, B. Dai, M. Zhu, L. Xia, F. Yu, J. Mater. Chem. A 3, 3659 (2015)

    Article  Google Scholar 

  15. H. Wang, E. Zhu, J. Yang, P. Zhou, D. Sun, W. Tang, J. Phys. Chem. C 116, 13013 (2012)

    Article  Google Scholar 

  16. Y.-Y. Horng, Y.-C. Lu, Y.-K. Hsu, C.-C. Chen, L.-C. Chen, K.-H. Chen, J. Power Sour. 195, 4418 (2010)

    Article  Google Scholar 

  17. H. Jin, L. Zhou, C.L. Mak, H. Huang, W.M. Tang, H.L.W. Chan, Nano Energy 11, 662 (2015)

    Article  Google Scholar 

  18. P. Deshmukh, N. Shinde, S. Patil, R. Bulakhe, C. Lokhande, Chem. Eng. J. 223, 572 (2013)

    Article  Google Scholar 

  19. Y. Wang, X. Yang, L. Qiu, D. Li, Energy Environ. Sci. 6, 477 (2013)

    Article  Google Scholar 

  20. X. Wu, Q. Wang, W. Zhang, Y. Wang, W. Chen, Electrochim. Acta 211, 1066 (2016)

    Article  Google Scholar 

  21. D. Patil, J. Shaikh, D. Dalavi, S. Kalagi, P. Patil, Mater. Chem. Phys. 128, 449 (2011)

    Article  Google Scholar 

  22. Y. Okahisa, A. Yoshida, S. Miyaguchi, H. Yano, Compos. Sci. Technol. 69, 1958 (2009)

    Article  Google Scholar 

  23. F. Weichelt, R. Emmler, R. Flyunt, E. Beyer, M.R. Buchmeiser, M. Beyer, Macromol. Mater. Eng. 295, 130 (2010)

    Google Scholar 

  24. S. Teng, G. Siegel, M.C. Prestgard, W. Wang, A. Tiwari, Electrochim. Acta 161, 343 (2015)

    Article  Google Scholar 

  25. C. Wan, Y. Jiao, J. Li, RSC Adv. 6, 64811 (2016)

    Article  Google Scholar 

  26. C. Wan, Y. Lu, Q. Sun, J. Li, Appl. Surf. Sci. 321, 38 (2014)

    Article  Google Scholar 

  27. C. Wan, Y. Jiao, J. Li, Appl. Surf. Sci. 347, 891 (2015)

    Article  Google Scholar 

  28. S. Lv, F. Fu, S. Wang, J. Huang, L. Hu, RSC Adv. 5, 2813 (2015)

    Article  Google Scholar 

  29. Z. Weng, Y. Su, D.W. Wang, F. Li, J. Du, H.M. Cheng, Adv. Energy Mater. 1, 917 (2011)

    Article  Google Scholar 

  30. S. Lv, F. Fu, S. Wang, J. Huang, L. Hu, Electron. Mater. Let. 11, 633 (2015)

    Article  Google Scholar 

  31. W. Lan, C.-F. Liu, F.-X. Yue, R.-C. Sun, J.F. Kennedy, Carbohyd. Polym. 86, 672 (2011)

    Article  Google Scholar 

  32. M. Schwanninger, J. Rodrigues, H. Pereira, B. Hinterstoisser, Vib. Spectrosc. 36, 23 (2004)

    Article  Google Scholar 

  33. H. Chen, C. Ferrari, M. Angiuli, J. Yao, C. Raspi, E. Bramanti, Carbohyd. Polym. 82, 772 (2010)

    Article  Google Scholar 

  34. A.Y. Arasi, J.J.L. Jeyakumari, B. Sundaresan, V. Dhanalakshmi, R. Anbarasan, Spectrochim. Acta 74, 1229 (2009)

    Article  Google Scholar 

  35. H. Mi, X. Zhang, S. Yang, X. Ye, J. Luo, Mater. Chem. Phys. 112, 127 (2008)

    Article  Google Scholar 

  36. F.M. Kelly, J.H. Johnston, T. Borrmann, M.J. Richardson, Eur. J. Inorg. Chem. 2007, 5571 (2007)

    Article  Google Scholar 

  37. C. Wagner, D. Zatko, R. Raymond, Anal. Chem. 52, 1445 (1980)

    Article  Google Scholar 

  38. A.A. Qaiser, M.M. Hyland, D.A. Patterson, J. Phys. Chem. B 115, 1652 (2011)

    Article  Google Scholar 

  39. X. Wang, J. Zhang, K. Zhang, W. Zou, S. Chen, RSC Adv. 6, 44851 (2016)

    Article  Google Scholar 

  40. J. Tong, H. Zhang, J. Gu, L. Li, C. Ma, J. Zhao, C. Wang, J. Mater. Sci. 51, 1966 (2016)

    Article  Google Scholar 

  41. S. Tan, D. Belanger, J. Phys. Chem. B 109, 23480 (2005)

    Article  Google Scholar 

  42. R. Nagarale, G. Gohil, V.K. Shahi, G. Trivedi, R. Rangarajan, J. Colloid Interface Sci. 277, 162 (2004)

    Article  Google Scholar 

  43. X.-L. Wei, M. Fahlman, A. Epstein, Macromolecules 32, 3114 (1999)

    Article  Google Scholar 

  44. L. Ma, L. Su, J. Zhang, D. Zhao, C. Qin, Z. Jin, K. Zhao, J. Electroanal. Chem. 777, 75 (2016)

    Article  Google Scholar 

  45. S.-J. Tang, A.-T. Wang, S.-Y. Lin, K.-Y. Huang, C.-C. Yang, J.-M. Yeh, K.-C. Chiu, Polym. J. 43, 667 (2011)

    Article  Google Scholar 

  46. N. Gospodinova, L. Terlemezyan, Prog. Polym. Sci. 23, 1443 (1998)

    Article  Google Scholar 

  47. D.-W. Wang, F. Li, J. Zhao, W. Ren, Z.-G. Chen, J. Tan, Z.-S. Wu, I. Gentle, G.Q. Lu, H.-M. Cheng, ACS Nano 3, 1745 (2009)

    Article  Google Scholar 

  48. J. Zhang, X. Zhao, J. Phys. Chem. C 116, 5420 (2012)

    Article  Google Scholar 

  49. M.H. Al-Saleh, U. Sundararaj, Carbon 47, 2 (2009)

    Article  Google Scholar 

  50. M.M. Sk, C.Y. Yue, K. Ghosh, R.K. Jena, J. Power Sources 308, 121 (2016)

    Article  Google Scholar 

  51. Y. Hou, Y. Cheng, T. Hobson, J. Liu, Nano Lett. 10, 2727 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos. 31270590 and 31470584) and the Fundamental Research Funds for the Central Universities (Grant No. 2572016AB22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Additional information

Yue Jiao, Caichao Wan have contributed equally to this work and are considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Wan, C. & Li, J. Scalable synthesis and characterization of free-standing supercapacitor electrode using natural wood as a green substrate to support rod-shaped polyaniline. J Mater Sci: Mater Electron 28, 2634–2641 (2017). https://doi.org/10.1007/s10854-016-5840-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5840-3

Keywords

Navigation