Skip to main content
Log in

Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)-assisted synthesis of graphene/polyaniline composites as high-performance supercapacitor electrodes

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene/polyaniline (GN/PANI) composites were synthesized by in situ polymerization with the assistance of poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123). We show that the addition of P123 enhanced the wettability of GN and hence improved its uniformity in aqueous solution and the dispersity of PANI loaded on GN surface. Structural and morphological analyses indicate that GN has been successfully coated with PANI. P123 was mainly acted as soft temples to improve the control of morphology and increase composites effective specific surface area. Furthermore, it can improve composites capacitive performance as evidenced by electrochemical tests. When the molar ratio of P123 to ANI is 0.0108, the composites exhibit the best performance, in terms of the rate capability, the lowest equivalent series resistance (0.31 Ω) and the charge-transfer resistance (1.46 Ω). Additionally, it achieves a capacity retention of 91.8 % after 1000 charge–discharge cycles at the current density of 500 mA g−1, an increase of 82 % over the composites without P123. A mechanism for interactions of P123, GN, and PANI is proposed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen JC, Liu YQ, Li WJ, Wu C, Xu LQ, Yang H (2015) Nanostructured polystyrene/polyaniline/graphene hybrid materials for electrochemical supercapacitor and Na-ion battery applications. J Mater Sci 50:5466–5474. doi:10.1007/s10853-015-9092-z

    Article  Google Scholar 

  2. Thounthong P, Chunkag V, Sethakul P, Sikkabut S, Pierfederici S, Davat B (2011) Energy management of fuel cell/solar cell/supercapacitor hybrid power source. J Power Sources 196:313–324

    Article  Google Scholar 

  3. Kinjo T, Senjyu T, Urasaki N, Fujita H (2006) Output levelling of renewable energy by electric double-layer capacitor applied for energy storage system. IEEE Trans Energy Convers 21:221–227

    Article  Google Scholar 

  4. Zhu T, Zheng SJ, Chen YG, Luo J, Guo HB, Chen YE (2014) Improvement of hydrothermally synthesized MnO2 electrodes on Ni foams via facile annealing for supercapacitor applications. J Mater Sci 49:6118–6126. doi:10.1007/s10853-014-8343-8

    Article  Google Scholar 

  5. Vidhyadharan B, Zain NKM, Misnon II, Aziz RA, Ismail J, Yusoff MM, Jose R (2014) High performance supercapacitor electrodes from electrospun nickel oxide nanowires. J Alloys Compd 610:143–150

    Article  Google Scholar 

  6. Fu Y, Song JM, Zhu YQ, Cao CB (2014) High-performance supercapacitor electrode based on amorphous mesoporous Ni(OH)2 nanoboxes. J Power Sources 262:344–348

    Article  Google Scholar 

  7. Abdelkafi A, Krichen L (2014) Energy management optimization of a hybrid power production unit based renewable energies. Int J Electr Power Energy Syst 62:1–9

    Article  Google Scholar 

  8. Cao F, Pan GX, Xia XH, Tang PS, Chen HF (2014) Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application. J Power Sources 264:161–167

    Article  Google Scholar 

  9. Sarangapani S, Tilak BV, Chen CP (1996) Materials for electrochemical capacitors theoretical and experimental constraints. J Electrochem Soc 143:3791–3799

    Article  Google Scholar 

  10. Xiong P, Hu CY, Fan Y, Zhang WY, Zhu JW, Wang X (2014) Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance. J Power Sour 266:384–392

    Article  Google Scholar 

  11. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  Google Scholar 

  12. Chen AB, Yu YF, Xing TT, Wang RJ, Zhang Y, Li Q (2015) Synthesis of graphitic carbon spheres for enhanced supercapacitor performance. J Mater Sci 50:5578–5582. doi:10.1007/s10853-015-9106-x

    Article  Google Scholar 

  13. Jiang ZJ, Jiang ZQ, Chen WH (2014) The role of holes in improving the performance of nitrogen-doped holey graphene as an active electrode material for supercapacitor and oxygen reduction reaction. J Power Sources 251:55–65

    Article  Google Scholar 

  14. Wang DW, Li F, Zhao JP, Ren W, Chen ZG, Tan J, Wu ZS, Gentle L, Lu GQ, Cheng HM (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745–1752

    Article  Google Scholar 

  15. Cong HP, Ren XC, Wang P, Yu SH (2013) Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ Sci 6:1185–1191

    Article  Google Scholar 

  16. Wu Q, Xu YX, Yao ZY, Liu AR, Shi GQ (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970

    Article  Google Scholar 

  17. Zhou SP, Zhang HM, Zhao Q, Wang XH, Li J, Wang FS (2013) Graphene-wrapped polyaniline nanofibers as electrode materials for organic supercapacitors. Carbon 52:440–450

    Article  Google Scholar 

  18. Feng XM, Li RM, Ma YW, Chen RF, Shi NE, Fan QL, Huang W (2011) One-Step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv Funct Mater 21:2989–2996

    Article  Google Scholar 

  19. Hao QL, Wang HL, Yang XJ, Lu LD, Wang X (2011) Morphology-controlled fabrication of sulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigation of their electrochemical properties. Nano Res 4:323–333

    Article  Google Scholar 

  20. Zhao T, Jiang H, Ma J (2011) Surfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitors. J Power Sour 196:860–864

    Article  Google Scholar 

  21. Singu BS, Male U, Srinivasan P, Pabba S (2014) Use of surfactant in aniline polymerization with TiO2 to PANI-TiO2 for supercapacitor performance. J Solid State Electrochem 18:1995–2003

    Article  Google Scholar 

  22. Jiang RR, Huang T, Liu JL, Zhuang JH, Yu AS (2009) A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode. Electrochim Acta 54:3047–3052

    Article  Google Scholar 

  23. Zhang HH, Wang YQ, Liu CW (2012) Influence of surfactant CTAB on the electrochemical performance of manganese dioxide used as supercapacitor electrode material. J Alloys Compd 517:1–8

    Article  Google Scholar 

  24. Roux EL, Liang Y, Törnroos KW, Nief F, Anwander R (2012) Heterogenization of lanthanum and neodymium monophosphacyclopentadienyl bis(tetramethylaluminate) complexes onto periodic mesoporous silica SBA-15. Organometallics 31:6526–6537

    Article  Google Scholar 

  25. Li YZ, Zhao X, Xu Q, Zhang QH, Chen DJ (2011) Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors. Langmuir 27:6458–6463

    Article  Google Scholar 

  26. Li YZ, Zhang QH, Zhao X, Yu PP, Wu LH, Chen DJ (2012) Enhanced electrochemical performance of polyaniline/sulfonated polyhedral oligosilsesquioxane nanocomposites with porous and ordered hierarchical nanostructure. J Mater Chem 22:1884–1892

    Article  Google Scholar 

  27. Yan J, Wei T, Shao B, Fan ZJ, Qian WZ, Zhang ML, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487–493

    Article  Google Scholar 

  28. Kuilla T, Bhadra S, Yao D, Kimc NH, Bosed S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  Google Scholar 

  29. Bose S, Kuila T, Mishra AK, Kim Lee JH (2012) Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J Mater Chem 22:9696–9703

    Article  Google Scholar 

  30. Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY, Lee YH (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Energy Mater 19:1987–1992

    Google Scholar 

  31. Liu Y, Wang HH, Zhou J, Bian LY, Zhu EW, Hai JF, Tang J, Tang WH (2013) Graphene/polypyrrole intercalating nanocomposites as supercapacitors electrode. Electrochim Acta 112:44–52

    Article  Google Scholar 

  32. Xu JJ, Wang K, Zu SZ, Han BH, Wei ZX (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4:5019–5026

    Article  Google Scholar 

  33. Zhang HH, Gu JN, Jiang YY, Wang YQ, Zhao J, Zhang XX, Wang CY (2014) Calcination removing soft template cetyl trimethyl ammonium bromide and its effects on capacitance performance of supercapacitor electrode MnO2. Energy Convers Manag 86:605–613

    Article  Google Scholar 

  34. Xu YF, Schwab MG, Strudwick AJ, Hennig I, Feng XL, Wu ZS, Müllen K (2013) Screen-printable thin film supercapacitor device utilizing graphene/polyaniline inks. Adv Energy Mater 3:1035–1040

    Article  Google Scholar 

  35. Zhang K, Mao L, Zhang LL, Chan HSO, Zhao XS, Wu JS (2011) Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. J Mater Chem 21:7302–7307

    Article  Google Scholar 

  36. Mao L, Zhang K, Chan HSO, Wu JS (2012) Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. 22:80–85

  37. Wang MR, Zhang HH, Wang CY, Hu XY, Wang GX (2013) Direct electrosynthesis of poly-o-phenylenediamine bulk materials for supercapacitor application. Electrochim Acta 91:144–151

    Article  Google Scholar 

  38. Zhang HH, Gu JN, Tong J, Ma C, Zhao J, Zhang XX, Wang CY (2015) Poly(ethylene oxide)–poly(propylene oxide)–poly(ethyl oxide) enhancing capacitance behavior of composite electrode material poly(o-phenylenediamine)/manganese dioxide for supercapacitor. Energy Convers Manag 91:120–131

    Article  Google Scholar 

  39. Wang Y, Shi ZQ, Huang Y, Ma YF, Wang CY, Chen MM, Chen YS (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107

    Article  Google Scholar 

  40. Zhou J, Li W, Xing W, Zhou SP (2011) Capacitive performance of tunable ordered mesoporous carbons in organic and H2SO4 electrolyte. Acta Phys-Chim Sin 27:1431–1438

    Google Scholar 

  41. Hu CC, Chu CH (2001) Electrochemical impedance characterization of polyaniline-coated graphite electrodes for electrochemical capacitors-effects of film coverage/thickness and anions. J Electroanal Chem 503:105–116

    Article  Google Scholar 

  42. Osório WR, Peixoto LC, Garcia A (2009) The effects of Ag content and dendrite spacing on the electrochemical behavior of PbeAg alloys for Pb-acid battery components. Int J Electrochem Sci 4:820–831

    Google Scholar 

  43. Kong LB, Zhang J, An JJ, Luo YC, Kang L (2008) MWNTs/PANI composite materials prepared by in situ chemical oxidative polymerization for supercapacitor electrode. J Mater Sci 43:3364–3369. doi:10.1007/s10853-008-2586-1

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (Nos. 21106124 and 21375116) and Postdoctoral Science Foundation of China (2014M551668). The related measure and analysis instrument for this work was supported by the Testing Center of Yangzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaihao Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, J., Zhang, H., Gu, J. et al. Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)-assisted synthesis of graphene/polyaniline composites as high-performance supercapacitor electrodes. J Mater Sci 51, 1966–1977 (2016). https://doi.org/10.1007/s10853-015-9506-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9506-y

Keywords

Navigation