Skip to main content
Log in

Graphene oxide-polyaniline nanocomposites for high performance supercapacitor and their optical, electrical and electrochemical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polyaniline/Graphene oxide (PA/GO) composites were prepared by chemical polymerization of aniline with different wt% of GO under acid conditions. The synthesized samples were characterized by using Fourier transform infra red spectroscopy, ultraviolet–visible absorption, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis. It is found that the dc electrical conductivity dramatically increased to 84 S/m for PA/GO (5 wt%) composite at 150 °C compared to pure PA (0.075 S/m). The PA/GO composites showed a reversible electrochemical response up to 150th repeated cycles as revealed by the cyclic voltammetry study. High specific capacitance of PA/GO composite of 543.75 F/g was obtained in the potential range from 0 to 0.50 V at 2 mA compared with 266.66 F/g for pure PA by galvanostatic charge–discharge analysis. Incorporation of GO into the polymer matrix has a pronounced effect on the electrical conductivity and electrochemical capacitance performance of PA/GO nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Gui, C. Liu, F. Chen, J. Liu, Appl. Surf. Sci. 307, 172 (2014)

    Article  Google Scholar 

  2. K. Majid, R. Tabassum, A.F. Shah, S. Ahmad, M.L. Singla, J. Mater. Sci.: Mater. Electron. 20, 958 (2009)

    Google Scholar 

  3. J. Maiti, B. Pokhrel, R. Boruah, S.K. Dolui, Sens. Actuators, B 141, 447 (2009)

    Article  Google Scholar 

  4. F. Hussain, M. Hojjati, M. Okamoto, R.E. Gorga, J. Compos. Mater. 40, 1511 (2006)

    Article  Google Scholar 

  5. T.W. Lee, O.O. Park, J.J. Kim, J.M. Hong, Y.C. Kim, Chem. Mater. 13, 2217 (2001)

    Article  Google Scholar 

  6. J. Stejskal, R.G. Gilbert, Pure Appl. Chem. 74, 857 (2002)

    Article  Google Scholar 

  7. M. Genies, A. Boyle, M. Lapkowsky, C. Tsintavis, Synth. Met. 36, 139 (1990)

    Article  Google Scholar 

  8. S. Konwer, B. Pokhrel, S.K. Dolui, J. Appl. Polym. Sci. 116, 1138 (2010)

    Google Scholar 

  9. F. Yan, G. Xue, J. Mater. Chem. 9, 3035 (1999)

    Article  Google Scholar 

  10. A. Dey, S. De, A. De, S.K. De, Nanotechnology 15, 1277 (2004)

    Article  Google Scholar 

  11. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  12. J. Wu, W. Pisula, K. Mullen, Chem. Rev. 107, 718 (2007)

    Article  Google Scholar 

  13. H. Bai, K. Sheng, P. Zhang, C. Li, G. Shi, J. Mater. Chem. 21, 18653 (2011)

    Article  Google Scholar 

  14. J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Science 315, 490 (2007)

    Article  Google Scholar 

  15. B.Z. Jang, A.J. Zhamu, Mat. Sci. 43, 5092 (2008)

    Article  Google Scholar 

  16. B.M. Yoo, H.J. Shin, H.W. Yoon, H.B. Park, J. Appl. Polym. Sci. 131, 39628 (2014)

    Article  Google Scholar 

  17. X. Wang, L. Zhi, K. Mullen, Nano Lett. 8, 323 (2008)

    Article  Google Scholar 

  18. P. Jonathan, P.A. Pandey, J.J. Moore, M. Bates, I.A. Kinloch, R.J. Young, N.R. Wilson, Angew. Chem. Int. Ed. 50, 3173 (2011)

    Article  Google Scholar 

  19. N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, Z. Liu, K. Suenaga, J.P. Rourke, S.J. York, J. Sloan, ACS Nano 3, 2547 (2009)

    Article  Google Scholar 

  20. Y. Matsuo, K. Tahara, Y. Sugie, Carbon 35, 113 (1997)

    Article  Google Scholar 

  21. P.G. Liu, K.C. Gong, P. Xiao, M. Xiao, J. Mater. Chem. 10, 933 (2000)

    Article  Google Scholar 

  22. J.Y. Xu, Y. Hu, L. Song, Q.G. Wang, W.C. Fan, G.X. Liao et al., Polym. Degrad. Stab. 73, 29 (2001)

    Article  Google Scholar 

  23. W.H. Kai, Y. Hirota, L. Hua, Y. Inoue, J. Appl. Polym. Sci. 107, 1395 (2008)

    Article  Google Scholar 

  24. N.A. Kotov, I. Dekany, J.H. Fendler, Adv. Mater. 8, 637 (1996)

    Article  Google Scholar 

  25. T. Cassagneau, J.H. Fendler, Adv. Mater. 10, 877 (1998)

    Article  Google Scholar 

  26. N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva et al., Chem. Mater. 11, 771 (1999)

    Article  Google Scholar 

  27. J.H. Wu, Q.W. Tang, H. Sun, J.M. Lin, H.Y. Ao, M.L. Huang et al., Langmuir 24, 4800 (2008)

    Article  Google Scholar 

  28. J. Yan, T. Wei, B. Shao, Q.Z. Fan, F. Wei et al., Carbon 48, 487 (2010)

    Article  Google Scholar 

  29. D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, S. Iijima et al., Nat. Mater. 5, 987 (2006)

    Article  Google Scholar 

  30. C. Portet, J. Chmiola, Y. Gogotsi, S. Park, K. Lian, Electrochim. Acta 53, 7675 (2008)

    Article  Google Scholar 

  31. C.M. Yang, Y.J. Kim, M. Endo, H. Kanoh, M. Yudasaka, S. Iijima et al., J. Am. Chem. Soc. 129, 20 (2007)

    Article  Google Scholar 

  32. P. Sen, A. De, Electrochim. Acta 55, 4677 (2010)

    Article  Google Scholar 

  33. S. Konwer, A.K. Guha, S.K. Dolui, J. Mater. Sci. 48, 1729 (2013)

    Article  Google Scholar 

  34. A. Tiwari, R. Kumar, M. Prabaharan, R.R. Pandey, P. Kumari, A.K. Mishra et al., Polym. Adv. Techno. 21, 615 (2010)

    Article  Google Scholar 

  35. C.M. Yang, Y.J. Kim, M. Endo, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko, J. Am. Chem. Soc. 129, 20 (2007)

    Article  Google Scholar 

  36. S. Konwer et al., Mater. Chem. Phys. 128, 283 (2011)

    Article  Google Scholar 

  37. L. Yuan, J. Wanga, S.Y. Chewa, J. Chen, Z.P. Guo, L. Zhao, K. Konstantinov, H.K. Liu, J. Power Sources 174, 1183 (2007)

    Article  Google Scholar 

  38. Q.J. Sun, H.Q. Wang, C.H. Yang, F.Y. Li, J. Mater. Chem. 13, 800 (2003)

    Article  Google Scholar 

  39. S. Konwer, J.P. Gogoi, A. Kalita, S.K. Dolui, J. Mater. Sci. Mater. Elect. 22, 1154 (2011)

    Article  Google Scholar 

  40. S. Konwer, R. Boruah, A. Kalita, S.K. Dolui, J. Elec. Mater. 40, 2248 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Department of Science and Technology (DST) and Science and Engineering Research Board (SERB) India, for their financial support in the research work under “DST Fast Track Scheme for Young Scientist” (No. SERB/F/6115/2013-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Konwer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konwer, S. Graphene oxide-polyaniline nanocomposites for high performance supercapacitor and their optical, electrical and electrochemical properties. J Mater Sci: Mater Electron 27, 4139–4146 (2016). https://doi.org/10.1007/s10854-016-4273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4273-3

Keywords

Navigation