Skip to main content
Log in

Mesoporous architecture of TiO2 microspheres via controlled template assisted route and their photoelectrochemical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Anatase titanium dioxide (TiO2) microspheres were successfully synthesized via a controlled chemical route using carbon spheres as sacrificial templates. The morphology has been controlled by varying the deposition time of carbonaceous (c) spheres from 4 to 16 h with the interval of 4 h, which affect the size of TiO2 spheres. The structural, morphological, optical, compositional and photoelectrochemical properties of the TiO2 thin films were studied. X-ray diffraction (XRD) pattern confirms the formation of anatase TiO2 with the tetragonal crystal structure. Field emission scanning electron microscopy analysis revealed that the synthesized anatase TiO2 microspheres has average diameter of ~330–510 nm. The blueshift in optical absorption is observed due to Mie scattering. The indirect optical band gap energy of TiO2 was varied over 3.05–3.16 eV, with the increase in deposition time. The HRTEM and SAED results show the polycrystalline nature of the sample which is in good agreement with the XRD. The anatase TiO2 hollow spheres with mesoporous walls and high specific surface area i.e. 41 m2 g−1 was obtained using this simple method. The films were photoelectrochemically active with maximum current density 531 µA/cm2 under 100 mW/cm2 illuminations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J. Li, L.W. Wang, A.P. Alivisatos, Nature 430, 190 (2004)

    Article  Google Scholar 

  2. Q. Peng, Y.J. Dong, Y.D. Li, Angew. Chem. Int. Ed. 42, 3027 (2003)

    Article  Google Scholar 

  3. D. Chen, F. Huang, Y.B. Cheng, R.A. Caruso, Adv. Mater. 21, 2206 (2006)

    Article  Google Scholar 

  4. B.O. Regan, M. Gratzel, Nature 353, 744 (1991)

    Article  Google Scholar 

  5. A. Fujishima, K. Honda, Nature 238, 44 (1972)

    Article  Google Scholar 

  6. S.S. Mali, H. Kim, C.S. Shim, P.S. Patil, J.H. Kim, C.K. Hong, Sci. Rep. 3, 3004 (2013). doi:10.1038/srep03004

    Article  Google Scholar 

  7. W. Zhou, X. Liu, J. Cui, D. Liu, J. Li, H. Jiang, J. Wang, H. Liu, Cryst. Eng. Commun. 13, 4557 (2011)

    Article  Google Scholar 

  8. A. Welte, C. Waldauf, C. Brabec, P. Wellmann, Thin Solid Films 516, 7256 (2008)

    Article  Google Scholar 

  9. D.M. Satoca, R. Gomez, M.G. Hidalgo, P. Salvador, Catal. Today 129, 247 (2007)

    Article  Google Scholar 

  10. A.F. Wells, Structural Inorganic Chemistry, 5th edn. (Claredon Press, Oxford, 1984)

    Google Scholar 

  11. L. Miao, P. Jinb, K. Kanekoc, A. Teraid, N.N. Gabaind, S. Tanemura, Appl. Surf. Sci. 212, 654 (2003)

    Google Scholar 

  12. G. Benko, J. Kallioinen, P. Myllyperkio, F. Trif, J.E. Tommola, A.P. Yartsev, V. Sundstrom, J. Phys. Chem. B 108, 2862 (2004)

    Article  Google Scholar 

  13. T.P. Chou, Q. Zhang, B. Russo, G.E. Fryxell, G. Cao, J. Phys. Chem. C 451, 6296 (2007)

    Article  Google Scholar 

  14. H. Song, S. You, T. Chen, X. Jia, J. Mater. Sci. Mater. Electron. 26, 8442 (2015)

    Article  Google Scholar 

  15. Z. Yang, Z. Niu, Y. Lu, Z. Hu, C.C. Han, Angew. Chem. Int. Ed. 42, 1943 (2003)

    Article  Google Scholar 

  16. X.W. Lou, C.M. Li, L.A. Archer, Adv. Mater. 21, 2543 (2009)

    Google Scholar 

  17. Z. Zhang, F. Zuo, P. Feng, J. Mater. Chem. 20, 2206 (2010)

    Article  Google Scholar 

  18. J. Wang, Y. Bai, M. Wu, J. Yin, W.F. Zhang, J. Power Sour. 191, 614 (2009)

    Article  Google Scholar 

  19. G. Zhang, H.B. Wu, T. Song, U. Paik, X.W. Lou, Angew. Chem. Int. Ed. 53, 12590 (2014)

    Google Scholar 

  20. C.Y. Liao, S.T. Wang, F.C. Chang, H.P. Wang, H.P. Lin, J. Phys. Chem. Solids 75, 38 (2014)

    Article  Google Scholar 

  21. L. Sang, Y. Zhao, C. Burda, Chem. Rev. 454, 9283 (2014)

    Article  Google Scholar 

  22. S.S. Mali, P.S. Shinde, C.A. Betty, P.N. Bhosale, W.J. Lee, P.S. Patil, Prog. Photovolt. Res. Appl. 22, 525 (2014)

    Article  Google Scholar 

  23. S.U. Dubal, L.D. Jadhav, C.H. Bhosale, S. Varma, B.N. Wani, S.R. Bharadwaj, J. Mater. Sci. Mater. Electron. 26, 7316 (2015)

    Article  Google Scholar 

  24. V.K. LaMer, Ind. Eng. Chem. 44, 1270 (1952)

    Article  Google Scholar 

  25. H.G. Yang, H.C. Zeng, J. Phys. Chem. B 108, 3492 (2004)

    Article  Google Scholar 

  26. S.L. Bai, K.W. Zhang, L.S. Wang, J.H. Sun, R.X. Luo, D.Q. Li, A.F. Chen, J. Mater. Chem. A 2, 7927 (2014)

    Article  Google Scholar 

  27. X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Adv. Mater. 18, 2325 (2006)

    Article  Google Scholar 

  28. X. Sun, Y. Li, Angew. Chem. Int. Ed. 43, 597 (2004)

    Article  Google Scholar 

  29. D. Hwang, D.Y. Kim, S.Y. Jang, D. Kim, J. Mater. Chem. A 1, 1228 (2013)

    Article  Google Scholar 

  30. W.Q. Wu, Y.F. Xu, H.S. Rao, H.L. Feng, C.Y. Su, D.B. Kuang, Angew. Chem. Int. Ed. 53, 4816 (2014)

    Article  Google Scholar 

  31. S.S. Thind, G. Wu, M. Tian, A. Chen, Nanotechnology 23, 475706 (2012)

    Article  Google Scholar 

  32. H. Liu, D. Ding, C. Ning, Z. Li, Nanotechnology 23, 015502 (2012)

    Article  Google Scholar 

  33. T.S. Bhat, R.S. Devan, S.S. Mali, A.S. Kamble, S.A. Pawar, I.Y. Kim, Y.R. Ma, C.K. Hong, J.H. Kim, P.S. Patil, J. Mater. Sci. Mater. Electron. 25, 4501 (2014)

    Article  Google Scholar 

  34. J.A. Rengifo-Herrera, E. Mielczarski, N.C. Castillo, J. Kiwi, C. Pulgarin, Appl. Catal. B 84, 448 (2008)

    Article  Google Scholar 

  35. H.H. Landolt, R. Börnstein, K.H. Hellwege, J.B. Goodenough, M. Schulz, H. Weiss, O. Madelung, Landolt-Börnstein numerical data and functional relationships in science and technology. Group 3, Crystal and solid state physics. vol. 17, Semiconductors (1984)

  36. C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  37. T.P. Chou, Q.F. Zhang, G.E. Fryxell, G.Z. Cao, Adv. Mater. 19, 2588 (2007)

    Article  Google Scholar 

  38. Q. Zhang, D. Myers, J. Lan, S.A. Jenekhe, G. Cao, Phys. Chem. Chem. Phys. 14, 14982 (2012)

    Article  Google Scholar 

  39. L. Yang, Y. Lin, J.G. Jia, X.R. Xiao, X.P. Li, X.W. Zhou, J. Power Sour. 182, 440 (2008)

    Article  Google Scholar 

  40. C.H. Li, G.W. Kattawar, P. Yang, J. Quant. Spectrosc. Radiat. Transf. 89, 123 (2004)

    Article  Google Scholar 

  41. T. Nousiainen, K. Muinonen, J. Quant. Spectrosc. Radiat. Transf. 106, 389 (2007)

    Article  Google Scholar 

  42. F. Sauvage, D.H. Chen, P. Comte, F.Z. Huang, L.P. Heiniger, Y.B. Cheng, R.A. Caruso, M. Graetzel, ACS Nano 4, 4420 (2010)

    Article  Google Scholar 

  43. O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32, 33 (2004)

    Article  Google Scholar 

  44. D. Mardare, M. Tasca, M. Delibas, G.I. Rusu, Appl. Surf. Sci. 156, 200 (2000)

    Article  Google Scholar 

  45. J.B. Joo, Q. Zhang, I. Lee, M. Dahl, F. Zaera, Y. Yin, Adv. Funct. Mater. 22, 166 (2012)

    Article  Google Scholar 

  46. J.S. Chen, Y.L. Tan, C.M. Li, Y.L. Cheah, D. Luan, S. Madhavi, F.Y.C. Boey, L.A. Archer, X.W. Lou, J. Am. Chem. Soc. 32, 6124 (2010)

    Article  Google Scholar 

  47. S.S. Mali, P.S. Shinde, C.A. Betty, P.N. Bhosale, W.J. Lee, P.S. Patil, Appl. Surf. Sci. 257, 9737 (2011)

    Article  Google Scholar 

  48. A. Suisalu, J. Aarik, H. Maendar, I. Sildos, Thin Solid Films 343, 295 (1998)

    Article  Google Scholar 

  49. S.K. Deb, Solid State Commun. 45, 713 (1972)

    Article  Google Scholar 

  50. K.S. Song, R.T. Williams, Self-Trapped Excitons Solid State Science, vol. 105 (Springer, Heidelberg, 1993)

    Google Scholar 

  51. J. Lim, K. Shin, H.W. Kim, C. Lee, Mater. Sci. Eng. B 107, 301 (2004)

    Article  Google Scholar 

  52. S.S. Mali, S.K. Desai, S.S. Kalagi, C.A. Betty, P.N. Bhosale, R.S. Devan, Y.R. Ma, P.S. Patil, Dalton Trans. 41, 6130 (2012)

    Article  Google Scholar 

  53. R.D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto, J. Phys. Chem. B 105, 1984 (2001)

    Article  Google Scholar 

  54. T.S. Bhat, S.A. Vanalakar, R.S. Devan, S.S. Mali, S.A. Pawar, Y.R. Ma, C.K. Hong, J.H. Kim, P.S. Patil, J. Mater. Sci. Mater. Electron. 27, 4996 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors TSB is thankful to the University Grants Commission (UGC) New Delhi, India for awarding the UGC-BSR (JRF) fellowship (Grant no. F.25-1/2013-14(BSR)/7-167/2007 (BSR) for financial support. This work is partially supported by the Human Resources Development program (No.: 20124010203180) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. H. Kim or P. S. Patil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, T.S., Mali, S.S., Korade, S.D. et al. Mesoporous architecture of TiO2 microspheres via controlled template assisted route and their photoelectrochemical properties. J Mater Sci: Mater Electron 28, 304–316 (2017). https://doi.org/10.1007/s10854-016-5525-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5525-y

Keywords

Navigation