Skip to main content
Log in

Humidity sensor characteristics and electrical properties of Ni–Zn–Dy ferrite material prepared using different chelating-fuel agents

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Humidity sensor characteristics and electrical properties of Ni–Zn ferrite material doped with Dy were studied after synthesis via sol–gel self-combustion method. In order to obtain different micro configurations of the material reflected in different porosities, four different fuel agents were involved: citric acid, tartaric acid, cellulose and urea. XRD and XPS techniques were used to certify the composition. The influence of fuel agent and structural features on the electrical properties of ferrite sintered pellets was investigated at room temperature as a function of frequency and humidity. Because the electrical characteristics of a porous material can significantly affect by the humidity, the electrical measurements were carried out in controlled humidity environments. Conduction mechanism is explained in terms of fuel agent influence on phase composition, grain size value, cation distribution and induced strain within spinel lattice by dissolution of voluminous Dy3+ ions. The humidity sensors applicative characteristics of the material are highlight by analyzing the sensitivity, response and recovery times of nickel–zinc–dysprosium ferrite used as active material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.V. Kurmude, R.S. Barkule, A.V. Raut, D.R. Shengule, K.M. Jadhav, J. Supercond. Novel Magn. 27, 547–553 (2014)

    Article  Google Scholar 

  2. C.E. Botez, K. Chattrakun, A.J. Metta-Magana, K.H. Pannell, J.A. Mattutes-Aquino, Phys. Lett. A 376, 2730–2734 (2012)

    Article  Google Scholar 

  3. S. Jie, W. Lixi, X. Naicen, Z. Qitu, J. Rare Earths 28, 451–455 (2010)

    Google Scholar 

  4. Z. Peng, X. Fu, H. Ge, Z. Fu, C. Wang, L. Qi, H. Miao, J. Magn. Magn. Mater. 323, 2513–2518 (2011)

    Article  Google Scholar 

  5. E.E. Ateia, M.A. Ahmed, L.M. Salah, A.A. El-Gamal, Phys. B 445, 60–67 (2014)

    Article  Google Scholar 

  6. J. Song, L.X. Wang, N.C. Xu, Q.T. Zhang, J. Rare Earths 28, 451–455 (2010)

    Article  Google Scholar 

  7. I. Petrila, F. Tudorache, S. Tascu, Phys. Lett. A 377, 1495–1498 (2013)

    Article  Google Scholar 

  8. I. Petrila, V. Manta, Comput. Phys. Commun. 185, 2874–2878 (2014)

    Article  Google Scholar 

  9. I. Petrila, F. Ungureanu, V. Manta, J. Comput. Electron. 14, 627–633 (2015)

    Article  Google Scholar 

  10. K.K. Bharathi, J.A. Chelvane, G. Markandeyulu, J. Magn. Magn. Mater. 321, 3677–3680 (2009)

    Article  Google Scholar 

  11. S. Chikazumi, Physics of ferromagnetism, 2nd edn. (Oxford University Press Inc., New York, 1997)

    Google Scholar 

  12. N.A. Spaldin, Magnetic materials fundamentals and applications, 2nd edn. (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  13. T. Slatineanu, A.R. Iordan, M.N. Palamaru, O.F. Caltun, V. Gafton, L. Leontie, Mater. Res. Bull. 46, 1455–1460 (2011)

    Article  Google Scholar 

  14. P. Samoila, T. Slatineanu, P. Postolache, A.R. Iordan, M.N. Palamaru, Mater. Chem. Phys. 136, 241–246 (2012)

    Article  Google Scholar 

  15. I. Petrila, F. Tudorache, Mater. Lett. 108, 129–133 (2013)

    Article  Google Scholar 

  16. M.F. Al-Hilli, S. Li, K.S. Kassim, J. Magn. Magn. Mater. 324, 873–879 (2012)

    Article  Google Scholar 

  17. S.M. Olhero, D. Soma, V.S. Amaral, T.W. Button, F.J. Alves, J.M. Ferreira, J. Eur. Ceram. Soc. 32, 2469–2476 (2012)

    Article  Google Scholar 

  18. F. Tudorache, F. Brinza, P.D. Popa, I. Petrila, M. Grigoras, S. Tascu, Acta Phys. Pol., A 121, 92–94 (2012)

    Google Scholar 

  19. X. Wang, Y. Li, J. Li, G. Yu, L. Zuo, H. Zhang, J. Mater. Sci. Mater. Electron. 25, 4230–4234 (2014)

    Article  Google Scholar 

  20. F. Tudorache, I. Petrila, J. Electron. Mater. 43, 3522–3526 (2014)

    Article  Google Scholar 

  21. S. Sharma, V. Singh, R.K. Kotnala, R.K. Dwivedi, J. Mater. Sci. Mater. Electron. 25, 1915–1921 (2014)

    Article  Google Scholar 

  22. M. Abbas, B.P. Rao, C.G. Kim, Mater. Chem. Phys. 147, 443–451 (2014)

    Article  Google Scholar 

  23. A.C.F.M. Costa, A.P.A. Diniz, A.G.B. de Melo, R.H.G.A. Kiminami, D.R. Cornejo, A.A. Costa, L. Gama, J. Magn. Magn. Mater. 320, 742–749 (2008)

    Article  Google Scholar 

  24. R. Sharma, S. Singhal, Phys. B 414, 83–90 (2013)

    Article  Google Scholar 

  25. M.S.R. Prasad, B. Prasad, B. Rajesh, K.H. Rao, K.V. Ramesh, J. Magn. Magn. Mater. 323, 2115–2121 (2011)

    Article  Google Scholar 

  26. A. Verma, O.P. Thakur, C. Prakash, T.C. Goel, R.G. Mendiratta, Mater. Sci. Eng., B 116, 1–6 (2005)

    Article  Google Scholar 

  27. N. Gupta, A. Verma, S.C. Kashyap, D.C. Dube, Solid State Commun. 134, 689–694 (2005)

    Article  Google Scholar 

  28. S. Nasir, A.S. Saleemi, M. Anis-ur-Rehman, J. Alloys Compd. 572, 170–174 (2013)

    Article  Google Scholar 

  29. S.A. Saafan, S.T. Assar, J. Magn. Magn. Mater. 324, 2989–3001 (2012)

    Article  Google Scholar 

  30. X. Wang, Z. Zhou, S. Behugn, M. Liu, H. Lin, X. Yang, Y. Gao, T. Nan, X. Xing, Z. Hu, N. Sun, J. Mater. Sci. Mater. Electron. 26, 1890–1894 (2015)

    Article  Google Scholar 

  31. F. Tudorache, I. Petrila, P.D. Popa, S. Tascu, Compos. B Eng. 51, 106–111 (2013)

    Article  Google Scholar 

  32. I. Petrila, F. Tudorache, Superlattices Microstruct. 70, 46–53 (2014)

    Article  Google Scholar 

  33. F. Tudorache, I. Petrila, K. Popa, A.M. Catargiu, Appl. Surf. Sci. 303, 175–179 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by POSDRU/89/1.5/S/49944 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iulian Petrila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tudorache, F., Petrila, I., Slatineanu, T. et al. Humidity sensor characteristics and electrical properties of Ni–Zn–Dy ferrite material prepared using different chelating-fuel agents. J Mater Sci: Mater Electron 27, 272–278 (2016). https://doi.org/10.1007/s10854-015-3750-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3750-4

Keywords

Navigation