Skip to main content
Log in

Reliability study of lead-free solders under specific conditions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Currently, accompanying the development of microelectronic joining and packaging, the integrated level of integrated circuit among the electronic devices has been substantially improved, which means the number of the soldered joints on a device is becoming more and more while the size of the micro-joint turns to be smaller and smaller. Given that soldered joints do play an important role in electronic packaging, serving as both mechanical bridges and electrical interconnections between the components and the bonding pads, to investigate the sensitivity of reliability of lead-free solders to various severe conditions deserves considerable concerns. This paper introduces the recent reliability research of lead-free solders under several specific conditions (e.g., isothermal aging, corrosive environment, drop impact, radiation) comprehensively, producing a fundamental summarization for the further reliability research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. J.O. Kim, J.P. Jung, J.H. Lee et al., Effects of laser parameters on the characteristics of a Sn–3.5 wt% Ag solder joint. Met. Mater. Int. 15(1), 119–123 (2009)

    Article  Google Scholar 

  2. L. Zhang, K.N. Tu, Structure and properties of lead-free solders bearing micro and nano particles. Mater. Sci. Eng. R Rep. 82, 1–32 (2014)

    Article  Google Scholar 

  3. J.B. Pan, B.J. Toleno, T.C. Chou et al., The effect of reflow profile on SnPb and SnAgCu solder joint shear strength. Solder. Surf. Mt. Technol. 18(4), 48–56 (2006)

    Article  Google Scholar 

  4. Y.L. Gao, C.D. Zou, B. Yang et al., Nanoparticles of SnAgCu lead-free solder alloy with an equivalent melting temperature of SnPb solder alloy. J. Alloys Compd. 484(1–2), 777–781 (2009)

    Article  Google Scholar 

  5. S. Chada, Topics in lead-free solders: interfacial and Sn whisker growth. J. Miner. Met. Mater. Soc. 64(10), 1174–1175 (2012)

    Article  Google Scholar 

  6. J. Chen, J. Shen, D. Min et al., Influence of minor Bi additions on the interfacial morphology between Sn–Zn–xBi solders and a Cu layer. J. Mater. Sci. Mater. Electron. 20(11), 1112–1117 (2009)

    Article  Google Scholar 

  7. S.M. Hayes, N. Chawla, D.R. Frear, Interfacial fracture toughness of Pb-free solders. Microelectron. Reliab. 49(3), 269–287 (2009)

    Article  Google Scholar 

  8. Y. Shi, J. Tian, H. Hao et al., Effects of small amount addition of rare earth Er on microstructure and property of SnAgCu solder. J. Alloys Compd. 453(1), 180–184 (2008)

    Article  Google Scholar 

  9. N. Zhao, X.Y. Liu, M.L. Huang et al., Characters of multicomponent lead-free solders. J. Mater. Sci. Mater. Electron. 24(10), 3925–3931 (2013)

    Article  Google Scholar 

  10. H. Ma, J.C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging. J. Mater. Sci. 44(5), 1141–1158 (2009)

    Article  Google Scholar 

  11. X.P. Zhang, L.M. Yin, C.B. Yu, Thermal creep and fracture behaviors of the lead-free Sn–Ag–Cu–Bi solder interconnections under different stress levels. J. Mater. Sci. Mater. Electron. 19(4), 393–398 (2008)

    Article  Google Scholar 

  12. L. Zhang, S. Xue, L. Gao et al., Development of Sn–Zn lead-free solders bearing alloying elements. J. Mater. Sci. Mater. Electron. 21(1), 1–15 (2010)

    Article  Google Scholar 

  13. G. Zeng, S. Xue, L. Zhang et al., Properties and microstructure of Sn–0.7Cu–0.05Ni solder bearing rare earth element Pr. J. Mater. Sci. Mater. Electron. 22(8), 1101–1108 (2011)

    Article  Google Scholar 

  14. G. Zeng, S. Xue, L. Zhang et al., Recent advances on Sn–Cu solders with alloying elements: review. J. Mater. Sci. Mater. Electron. 22(6), 565–578 (2011)

    Article  Google Scholar 

  15. G. Zeng, S. Xue, L. Zhang et al., A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates. J. Mater. Sci. Mater. Electron. 21(5), 421–440 (2010)

    Article  Google Scholar 

  16. J.W. Yoon, S.B. Jung, Reliability studies of Sn–9Zn/Cu solder joints with aging treatment. J. Alloys Compd. 407(1), 141–149 (2006)

    Article  Google Scholar 

  17. T. Gancarz, P. Fima, J. Pstruś, Thermal expansion, electrical resistivity, and spreading area of Sn–Zn–In alloys. J. Mater. Eng. Perform. 23(5), 1524–1529 (2014)

    Article  Google Scholar 

  18. T. Laurila, V. Vuorinen, J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng. R Rep. 49(1–2), 1–60 (2005)

    Article  Google Scholar 

  19. M. Abtew, G. Selvaduray, Lead-free solders in microelectronics. Mater. Sci. Eng. R Rep. 27(5–6), 95–141 (2000)

    Article  Google Scholar 

  20. T.C. Chang, M.C. Wang, M.H. Hon, Growth and morphology of the intermetallic compounds formed at the Sn–9Zn–2.5 Ag/Cu interface. J. Alloys Compd. 402(1–2), 141–148 (2005)

    Article  Google Scholar 

  21. M. Date, K.N. Tu, T. Shoji et al., Interfacial reactions and impact reliability of Sn–Zn solder joints on Cu or electroless Au/Ni (P) bond-pads. J. Mater. Res. 19(10), 2887–2896 (2004)

    Article  Google Scholar 

  22. L. Zhang, J.G. Han, Y.H. Guo et al., Reliability of SnAgCu/SnAgCuCe solder joints with different heights for electronic packaging. J. Mater. Sci. Mater. Electron. 25(10), 4489–4494 (2014)

    Article  Google Scholar 

  23. Y. Liu, J. Meerwijk, L.L. Luo et al., Formation and evolution of intermetallic layer structures at SAC305/Ag/Cu and SAC0705–Bi–Ni/Ag/Cu solder joint interfaces after reflow and aging. J. Mater. Sci. Mater. Electron. 25(11), 4954–4959 (2014)

    Article  Google Scholar 

  24. W.X. Chen, S.B. Xue, H. Wang et al., Effects of Ag on microstructures, wettabilities of Sn–9Zn–xAg solders as well as mechanical properties of soldered joints. J. Mater. Sci. Mater. Electron. 21(5), 461–467 (2010)

    Article  Google Scholar 

  25. L. Zhang, S.B. Xue, Y. Chen et al., Effects of cerium on Sn–Ag–Cu alloys based on finite element simulation and experiments. J. Rare Earths 27(1), 138–144 (2009)

    Article  Google Scholar 

  26. K.S. Kim, S.H. Huh, K. Suganuma, Effects of cooling speed on microstructure and tensile properties of Sn–Ag–Cu alloys. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 333(1–2), 106–114 (2002)

    Article  Google Scholar 

  27. G.D. Li, Y.W. Shi, H. Hao et al., Effect of rare earth addition on shear strength of SnAgCu lead-free solder joints. J. Mater. Sci. Mater. Electron. 20(2), 186–192 (2009)

    Article  Google Scholar 

  28. S. Dunford, S. Canumalla, P. Viswanadham, Intermetallic morphology and damage evolution under thermomechanical fatigue of lead (Pb)-free solder interconnections. 54th Electronic Components and Technology Conference, Las Vegas, Feburary, 2004, pp. 726–736

  29. J.H. Lee, A.M. Yu, J.H. Kim et al., Reaction properties and interfacial intermetallics for Sn–xAg–0.5Cu solders as a function of Ag content. Met. Mater. Int. 14(5), 649–654 (2008)

    Article  Google Scholar 

  30. J.M. Song, Y.R. Liu, Y.S. Lai et al., Influence of trace alloying elements on the ball impact test reliability of SnAgCu solder joints. Microelectron. Reliab. 52(1), 180–189 (2012)

    Article  Google Scholar 

  31. W. Peng, E. Monlevade, M.E. Marques, Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu. Microelectron. Reliab. 47(12), 2161–2168 (2007)

    Article  Google Scholar 

  32. L.L. Gao, S.B. Xue, L. Zhang et al., Effect of alloying elements on properties and microstructures of SnAgCu solders. Microelectron. Eng. 87(11), 2025–2034 (2010)

    Article  Google Scholar 

  33. L.L. Gao, S.B. Xue, L. Zhang et al., Effect of praseodymium on the microstructure and properties of Sn3.8Ag0.7Cu solder. J. Mater. Sci. Mater. Electron. 21(9), 910–916 (2010)

    Article  Google Scholar 

  34. L.L. Gao, Effect of Pr and/or Nd on the Microstructures and Properties of SnAgCu Solder. Nanjing University of Aeronautics and Astronautics, 2012

  35. L.L. Gao, S.B. Xue, L. Zhang et al., Effects of trace rare earth Nd addition on microstructure and properties of SnAgCu solder. J. Mater. Sci. Mater. Electron. 21(7), 643–648 (2010)

    Article  Google Scholar 

  36. X. Chen, J. Zhou, F. Xue et al., Microstructures and mechanical properties of Sn–0.1Ag–0.7Cu–(Co, Ni, and Nd) lead-free solders. J. Electron. Mater. 44(2), 725–732 (2015)

    Article  Google Scholar 

  37. L. Zhang, S.B. Xue, L.L. Gao et al., Creep behavior of SnAgCu solders with rare earth Ce doping. Trans. Nonferr. Met. Soc. China 20(3), 412–417 (2010)

    Article  Google Scholar 

  38. L. Zhang, J. Han, Y. Guo et al., Effect of rare earth Ce on the fatigue life of SnAgCu solder joints in WLCSP device using FEM and experiments. Mater. Sci. Eng. A 597, 219–224 (2014)

    Article  Google Scholar 

  39. L. Zhang, S.B. Xue, L.L. Gao et al., Microstructure characterization of SnAgCu solder bearing Ce for electronic packaging. Microelectron. Eng. 88(9), 2848–2851 (2011)

    Article  Google Scholar 

  40. H. Hao, J. Tian, Y.W. Shi et al., Properties of Sn3.8Ag0.7Cu solder alloy with trace rare earth element Y additions. J. Electron. Mater. 36(7), 766–774 (2007)

    Article  Google Scholar 

  41. H. Hao, Y. Shi, Z. Xia et al., Microstructure evolution of SnAgCuEr lead-free solders under high temperature aging. J. Electron. Mater. 37(1), 2–8 (2008)

    Article  Google Scholar 

  42. Y. Shi, J. Tian, H. Hao et al., Effects of small amount addition of rare earth Er on microstructure and property of SnAgCu solder. J. Alloys Compd. 453(1–2), 180–184 (2008)

    Article  Google Scholar 

  43. M.A. Dudek, N. Chawla, Effect of rare-earth (La, Ce, and Y) additions on the microstructure and mechanical behavior of Sn–3.9Ag–0.7Cu solder alloy. Metall. Mater. Trans. A 41A(3), 610–620 (2010)

    Article  Google Scholar 

  44. M.A. Dudek, R. Sidhu, N. Chawla et al., Microstructure and mechanical behavior of novel rare earth-containing Pb-free solders. J. Electron. Mater. 35(12), 2088–2097 (2006)

    Article  Google Scholar 

  45. Y.W. Wang, Y.W. Lin, C.T. Tu et al., Effects of minor Fe Co, and Ni additions on the reaction between SnAgCu solder and Cu. J. Alloys Compd. 478(1–2), 121–127 (2009)

    Article  Google Scholar 

  46. K.J. Zeng, R. Stierman, T.C. Chiu et al., Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability. J. Appl. Phys. 97(2), 024508 (2005)

    Article  Google Scholar 

  47. Y.W. Wang, C.C. Chang, C.R. Kao, Minimum effective Ni addition to SnAgCu solders for retarding Cu3Sn growth. J. Alloys Compd. 478(1–2), L1–L4 (2009)

    Google Scholar 

  48. B.L. Chen, G.Y. Li, Influence of Sb on IMC growth in Sn–Ag–Cu–Sb Pb-free solder joints in reflow process. Thin Solid Films 462, 395–401 (2004)

    Article  Google Scholar 

  49. G.Y. Li, X.D. Bi, Q. Chen et al., Influence of dopant on growth of intermetallic layers in Sn–Ag–Cu solder joints. J. Electron. Mater. 40(2), 165–175 (2011)

    Article  Google Scholar 

  50. G.Y. Li, B.L. Chen, X.Q. Shi et al., Effects of Sb addition on tensile strength of Sn–3.5Ag–0.7Cu solder alloy and joint. Thin Solid Films 504(1–2), 421–425 (2006)

    Article  Google Scholar 

  51. Y.S. Park, Y.M. Kwon, H.Y. Son, et al., Effect of Sb addition in Sn–Ag–Cu solder balls on the drop test reliability of BGA packages with electroless nickel immersion gold (ENIG) surface finish. 2007 9th International Conference on Electronic Materials and Packaging, Daejeon, South Korea, November 2007, pp. 317–321

  52. A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy et al., Influence of Zn addition on the microstructure, melt properties and creep behavior of low Ag-content Sn–Ag–Cu lead-free solders. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 608, 130–138 (2014)

    Article  Google Scholar 

  53. M.G. Cho, S.K. Kang, D.Y. Shih et al., Effects of minor additions of Zn on interfacial reactions of Sn–Ag–Cu and Sn–Cu solders with various cu substrates during thermal aging. J. Electron. Mater. 36(11), 1501–1509 (2007)

    Article  Google Scholar 

  54. M. Ghosh, M.K. Gunjan, S.K. Das et al., Effect of Mn on Sn–Ag–Cu ternary lead free solder alloy-Cu assembly: a comparative study. Mater. Sci. Technol. 26(5), 610–614 (2010)

    Article  Google Scholar 

  55. X.J. Wang, Q.S. Zhu, B. Liu et al., Effect of doping Al on the liquid oxidation of Sn–Bi–Zn solder. J. Mater. Sci. Mater. Electron. 25(5), 2297–2304 (2014)

    Article  Google Scholar 

  56. L. Zhang, L. Sun, Y.H. Guo et al., Reliability of lead-free solder joints in CSP device under thermal cycling. J. Mater. Sci. Mater. Electron. 25(3), 1209–1213 (2014)

    Article  Google Scholar 

  57. K.L. Lin, T.P. Liu, High-temperature oxidation of a Sn–Zn–Al solder. Oxid. Met. 50(3–4), 255–267 (1998)

    Article  Google Scholar 

  58. J.X. Jiang, J.E. Lee, K.S. Kim et al., Oxidation behavior of Sn–Zn solders under high-temperature and high-humidity conditions. J. Alloys Compd. 462(1–2), 244–251 (2008)

    Article  Google Scholar 

  59. K.S. Kim, T. Matsuura, K. Suganuma, Effects of Bi and Pb on oxidation in humidity for low-temperature lead-free solder systems. J. Electron. Mater. 35(1), 41–47 (2006)

    Article  Google Scholar 

  60. W.X. Chen, S.B. Xue, H. Wang et al., Investigation on properties of Ga to Sn–9Zn lead-free solder. J. Mater. Sci. Mater. Electron. 21(5), 496–502 (2010)

    Article  Google Scholar 

  61. C.Y. Chou, S.W. Chen, Y.S. Chang, Interfacial reactions in the Sn–9Zn–(xCu)/Cu and Sn–9Zn–(xCu)/Ni couples. J. Mater. Res. 21(7), 1849–1856 (2006)

    Article  Google Scholar 

  62. N. Huang, A. Hu, M. Li et al., Influence of Cr alloying on the oxidation resistance of Sn–8Zn–3Bi solders. J. Mater. Sci. Mater. Electron. 24(8), 2812–2817 (2013)

    Article  Google Scholar 

  63. H. Ye, S.B. Xue, J.D. Luo et al., Properties and interfacial microstructure of Sn–Zn–Ga solder joint with rare earth Pr addition. Mater. Des. 46, 816–823 (2013)

    Article  Google Scholar 

  64. H. Ye, S. Xue, M. Pecht, Evaluation of the microstructure and whisker growth in Sn–Zn–Ga solder with Pr content. J. Mater. Res. 27(14), 1887–1894 (2012)

    Article  Google Scholar 

  65. H. Ye, S. Xue, C. Chen et al., Growth behaviors of tin whisker in RE-doped Sn–Zn–Ga solder. Solder. Surf. Mt. Technol. 25(3), 139–144 (2013)

    Article  Google Scholar 

  66. K. Berent, P. Fima, T. Ganacarz et al., Wetting and microstructure evolution of the Sn–Zn–Ag/Cu interface. J. Mater. Eng. Perform. 23(5), 1630–1633 (2014)

    Article  Google Scholar 

  67. F.Y. Hung, T.S. Lui, L.H. Chen et al., Resonant characteristics of the microelectronic Sn–Cu solder. J. Alloys Compd. 457(1–2), 171–176 (2008)

    Article  Google Scholar 

  68. N. Zhao, H.T. Ma, L. Wang, Interfacial reactions between Sn–Cu based multicomponent solders and Ni substrates during soldering and aging. Solder. Surf. Mt. Technol. 21(2), 19–23 (2009)

    Article  Google Scholar 

  69. J.W. Yoon, S.W. Kim, J.M. Koo et al., Reliability investigation and interfacial reaction of ball-grid-array packages using the lead-free Sn–Cu solder. J. Electron. Mater. 33(10), 1190–1199 (2004)

    Article  Google Scholar 

  70. J.W. Yoon, S.W. Kim, S.B. Jung, Effect of reflow time on interfacial reaction and shear strength of Sn–0.7Cu solder/Cu and electroless Ni–P BGA joints. J. Alloys Compd. 385(1–2), 192–198 (2004)

    Article  Google Scholar 

  71. M.N. Islam, Y.C. Chan, Interfacial reactions of Sn–Cu solder with Ni/Au surface finish on Cu pad during reflow and aging in ball grid array packages. Mater. Sci. Eng. B 117(3), 246–253 (2005)

    Article  Google Scholar 

  72. J.W. Yoon, Y.H. Lee, D.G. Kim et al., Intermetallic compound layer growth at the interface between Sn–Cu–Ni solder and Cu substrate. J. Alloys Compd. 381(1–2), 151–157 (2004)

    Article  Google Scholar 

  73. L. Hua, C. Yang, Corrosion behavior, whisker growth, and electrochemical migration of Sn–3.0Ag–0.5Cu solder doping with In and Zn in NaCl solution. Microelectron. Reliab. 51(12), 2274–2283 (2011)

    Article  Google Scholar 

  74. L.R. Garcia, L.C. Peixoto, W.R. Osorio et al., Globular-to-needle Zn-rich phase transition during transient solidification of a eutectic Sn–9 %Zn solder alloy. Mater. Lett. 63(15), 1314–1316 (2009)

    Article  Google Scholar 

  75. T. Fang, M. Osterman, M. Petch, Statistical analysis of tin whisker growth. Microelectron. Reliab. 46(5–6), 846–849 (2006)

    Article  Google Scholar 

  76. M. Liu, A.P. Xian, Tin whisker growth on bulk Sn–Pb eutectic doping with Nd. Microelectron. Reliab. 49(6), 667–672 (2009)

    Article  Google Scholar 

  77. J. Smetana, Theory of tin whisker growth: the end game. IEEE Trans. Electron. Packag. Manuf. 30(1), 11–22 (2007)

    Article  Google Scholar 

  78. A. Dimitrovska, R. Kovacevic, Mitigation of Sn whisker growth by composite Ni/Sn plating. J. Electron. Mater. 38(12), 2516–2524 (2009)

    Article  Google Scholar 

  79. J.W. Osenbach, J.M. DeLucca, B.D. Potteiger et al., Sn corrosion and its influence on whisker growth. IEEE Trans. Electron. Packag. Manuf. 30(1), 23–35 (2007)

    Article  Google Scholar 

  80. P. Oberndorff, M. Dittes, P. Crema et al., Humidity effects on Sn whisker formation. IEEE Trans. Electron. Packag. Manuf. 29(4), 239–245 (2006)

    Article  Google Scholar 

  81. P. Oberndorff, M. Dittes, P. Crema, et al., Whisker formation on matte Sn influencing of high humidity. 55th Electronic Components and Technology Conference, Florida, USA, May, 2005, pp. 429–433

  82. B. Liu, T.K. Lee, K.C. Liu, Impact of 5 % NaCl salt spray pretreatment on the long-term reliability of wafer-level packages with Sn–Pb and Sn–Ag–Cu solder interconnects. J. Electron. Mater. 40(10), 2111–2118 (2011)

    Article  Google Scholar 

  83. M. Mori, K. Miura, T. Sasaki et al., Corrosion of tin alloys in sulfuric and nitric acids. Corros. Sci. 44(4), 887–898 (2002)

    Article  Google Scholar 

  84. U.S. Mohanty, K.L. Lin, Electrochemical corrosion behaviour of Pb-free Sn–8.5Zn–0.05Al–xGa and Sn–3Ag–0.5Cu alloys in chloride containing aqueous solution. Corros. Sci. 50(9), 2437–2443 (2008)

    Article  Google Scholar 

  85. D. Li, P.P. Conway, C. Liu, Corrosion characterization of tin–lead and lead free solders in 3.5 wt% NaCl solution. Corros. Sci. 50(4), 995–1004 (2008)

    Article  Google Scholar 

  86. K. Yokoyama, A. Nogami, J. Sakai, Creep corrosion cracking of Sn–3.0Ag and Sn–0.5Cu solder alloys in NaCl solution. Corros. Sci. 86, 142–148 (2014)

    Article  Google Scholar 

  87. K. Yokoyama, D. Tsuji, J. Sakai, Fracture of sustained tensile-loaded Sn–3.0Ag–0.5Cu solder alloy in NaCl solution. Corros. Sci. 53(10), 3331–3336 (2011)

    Article  Google Scholar 

  88. U.S. Mohanty, K.L. Lin, Electrochemical corrosion behaviour of lead-free Sn–8.5Zn–xAg–0.1Al–0.5 Ga solder in 3.5 % NaCl solution. Mater. Sci. Eng. A 406(1–2), 34–42 (2005)

    Article  Google Scholar 

  89. U.S. Mohanty, K.L. Lin, The polarization characteristics of Pb-free Sn–8.5Zn–xAg–0.1Al–0.5 Ga alloy in 3.5 % NaCl solution. Corros. Sci. 49(7), 2815–2831 (2007)

    Article  Google Scholar 

  90. D. Pavlov, T. Rogachev, Mechanism of the action of Ag and As on the anodic corrosion of lead and oxygen evolution at the Pb/PbO(2 − x)/H2O/O2/H2SO4 electrode system. Electrochim. Acta 31(2), 241–249 (1986). doi:10.1016/0013-4686(86)87115-8

    Article  Google Scholar 

  91. M.F.M. Nazeri, M.G. Affendy, A.A. Mohamad, Corrosion study of Sn–9Zn lead-free solder in alkaline solution. Int. J. Electrochem. Sci. 7(5), 4182–4191 (2012)

    Google Scholar 

  92. M.F.M. Nazeri, A.A. Mohamad, Corrosion measurement of Sn–Zn lead-free solders in 6M KOH solution. Measurement 47, 820–826 (2014)

    Article  Google Scholar 

  93. U.S. Mohanty, K.L. Lin, Effect of Al on the electrochemical corrosion behaviour of Pb free Sn–8.5Zn–0.5Ag–xAl–0.5 Ga solder in 3.5 % NaCl solution. Appl. Surf. Sci. 252(16), 5907–5916 (2006)

    Article  Google Scholar 

  94. U.S. Mohanty, K.L. Lin, The effect of alloying element gallium on the polarization characteristics of Pb-free Sn–Zn–Ag–Al–XGa solders in NaCl solution. Corros. Sci. 48(3), 662–678 (2006)

    Article  Google Scholar 

  95. Y. Gao, C. Cheng, J. Zhao et al., Electrochemical corrosion of Sn–0.75Cu solder joints in NaCl solution. Trans. Nonferr. Met. Soc. China 22(4), 977–982 (2012)

    Article  Google Scholar 

  96. E.S. Freitas, W.R. Osorio, J.E. Spinelli et al., Mechanical and corrosion resistances of a Sn–0.7 wt%Cu lead-free solder alloy. Microelectron. Reliab. 54(6–7), 1392–1400 (2014)

    Article  Google Scholar 

  97. M. Mostofizadeh, J. Pippola, T. Marttila, et al., Effect of isothermal aging and salt spray tests on reliability and mechanical strength of eutectic Sn–Bi lead-free solder joints. 13th 2012 International Conference on Thermal, Mechanical and Multi-physics Simulation and Experiments in Microelectronics and Microsystems, 2012, pp. 1–8

  98. L. Hua, W. Dai, L.S. Duan, et al., Electrochemical migration and electrochemical corrosion behaviors in 3 wt% NaCI solution of 64Sn–35Bi–lAg solder with In doping for micro-nanoelectronic packagings. 13th 2012 International Conference on Electronic Packaging Technology & High Density Packaging, 2012, pp. 1372–1376

  99. D.G. Kim, S.B. Jung, Interfacial reactions and growth kinetics for intermetallic compound layer between In–48Sn solder and bare Cu substrate. J. Alloys Compd. 386(1–2), 151–156 (2005)

    Article  Google Scholar 

  100. J.M. Koo, S.B. Jung, Reliability of In–48Sn solder/Au/Ni/Cu BGA packages during reflow process. J. Electron. Mater. 34(12), 1565–1572 (2005)

    Article  Google Scholar 

  101. X. Zhang, G. Wang, X. Liu et al., Copper dendrites: synthesis, mechanism discussion, and application in determination of l-tyrosine. Cryst. Growth Des. 8(4), 1430–1434 (2008)

    Article  Google Scholar 

  102. G.R. Li, X.H. Lu, D.L. Qu, Electrochemical growth and control of ZnO dendritic structures. J. Phys. Chem. C 111(18), 6678–6683 (2007)

    Article  Google Scholar 

  103. T. Takemoto, R.M. Latanision, T.W. Eagar et al., Electrochemical migration tests of solder alloys in pure water. Corros. Sci. 39(8), 1415–1430 (1997)

    Article  Google Scholar 

  104. C. Dominkovics, G. Harsanyi, Fractal description of dendrite growth during electrochemical migration. Microelectron. Reliab. 48(10), 1628–1634 (2008)

    Article  Google Scholar 

  105. C.Y. Zhou, T.X. Yu, R.S.W. Lee, Drop/impact tests and analysis of typical portable electronic devices. Int. J. Mech. Sci. 50(5), 905–917 (2008)

    Article  Google Scholar 

  106. D.A. Shnawah, M.F.M. Sabri, I.A. Badruddin, A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products. Microelectron. Reliab. 52(1), 90–99 (2012)

    Article  Google Scholar 

  107. H. Tsukamoto, T. Nishimura, S. Suenaga et al., The influence of solder composition on the impact strength of lead-free solder ball grid array joints. Microelectron. Reliab. 51(3), 657–667 (2011)

    Article  Google Scholar 

  108. C.Y. Yu, J. Lee, W.L. Chen et al., Enhancement of the impact toughness in Sn–Ag–Cu/Cu solder joints via modifying the microstructure of solder alloy. Mater. Lett. 119, 20–23 (2014)

    Article  Google Scholar 

  109. Y. Yao, L.M. Keer, Cohesive fracture mechanics based numerical analysis to BGA packaging and lead free solders under drop impact. Microelectron. Reliab. 53(4), 629–637 (2013)

    Article  Google Scholar 

  110. D.Y.R. Chong, F.X. Che, J.H.L. Pang et al., Drop impact reliability testing for lead-free and lead-based soldered IC packages. Microelectron. Reliab. 46(7), 1160–1171 (2006)

    Article  Google Scholar 

  111. K. Mishiro, S. Ishikawa, M. Abe et al., Effect of the drop impact on BGA/CSP package reliability. Microelectron. Reliab. 42(1), 77–82 (2002)

    Article  Google Scholar 

  112. Y.S. Lai, P.C. Yang, C.L. Yeh, Effects of different drop test conditions on board-level reliability of chip-scale packages. Microelectron. Reliab. 48(2), 274–281 (2008)

    Article  Google Scholar 

  113. B. Wang, J. Li, A. Gallagher et al., Drop impact reliability of Sn-1.0Ag-0.5Cu BGA interconnects with different mounting methods. Microelectron. Reliab. 52(7), 1475–1482 (2012)

    Article  Google Scholar 

  114. A. Syed, T.Y. Tee, H.S. Ng et al., Advanced analysis on board trace reliability of WLCSP under drop impact. Microelectron. Reliab. 50(7), 928–936 (2010)

    Article  Google Scholar 

  115. J.W. Elmer, Y. Li, H.D. Barth et al., Synchrotron radiation microtomography for large area 3D imaging of multilevel microelectronic packages. J. Electron. Mater. 43(12), 4421–4427 (2014)

    Article  Google Scholar 

  116. T. Wang, P. Zhou, F. Cao et al., Growth behavior of Cu6Sn5 in Sn–6.5Cu solders under DC considering trace Al: in situ observation. Intermetallics 58, 84–90 (2015)

    Article  Google Scholar 

  117. P. Zhou, H. Kang, F. Cao et al., In situ study on growth behavior of Cu6Sn5 during solidification with an applied DC in RE-doped Sn–Cu solder alloys. J. Mater. Sci. Mater. Electron. 25(10), 4538–4546 (2014)

    Article  Google Scholar 

  118. G. Zeng, S.D. McDonald, C.M. Gourlay et al., Solidification of Sn–0.7Cu–0.15Zn solder: in situ observation. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45A(2), 918–926 (2014)

    Article  Google Scholar 

  119. W.R. Osorio, D.R. Leiva, L.C. Peixoto et al., Mechanical properties of Sn–Ag lead-free solder alloys based on the dendritic array and Ag3Sn morphology. J. Alloys Compd. 562, 194–204 (2013)

    Article  Google Scholar 

  120. H.T. Chen, J. Han, J. Li et al., Inhomogeneous deformation and microstructure evolution of Sn–Ag-based solder interconnects during thermal cycling and shear testing. Microelectron. Reliab. 52(6), 1112–1120 (2012)

    Article  Google Scholar 

  121. M.N. Wang, J.Q. Wang, H. Feng et al., In-situ observation of fracture behavior of Sn–3.0Ag–0.5Cu lead-free solder during three-point bending tests in ESEM. Mater. Sci. Eng. A 558, 649–655 (2012)

    Article  Google Scholar 

  122. M.L. Huang, F. Yang, N. Zhao et al., Synchrotron radiation real-time in situ study on dissolution and precipitation of Ag3Sn plates in sub-50 μm Sn–Ag–Cu solder bumps. J. Alloys Compd. 602, 281–284 (2014)

    Article  Google Scholar 

  123. M.L. Huang, Z.J. Zhang, N. Zhao et al., A synchrotron radiation real-time in situ imaging study on the reverse polarity effect in Cu/Sn–9Zn/Cu interconnect during liquid solid electromigration. Scr. Mater. 68(11), 853–856 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Laboratory of Advanced Welding Technology of Jiangsu Province, China (JSAWT-14-04). This work was also supported by A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-bai Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Xue, Sb. Reliability study of lead-free solders under specific conditions. J Mater Sci: Mater Electron 26, 9424–9442 (2015). https://doi.org/10.1007/s10854-015-3283-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3283-x

Keywords

Navigation