Skip to main content
Log in

High-K tungsten-mullite composite for electronic industrial application: synthesis and study of its microstructure, phase behavior and electrical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Highly crystallized mullite synthesis with different concentration of tungsten ions has been achieved by sol–gel technique and the effect of tungsten ion doping on mullite was examined at 1,100 and 1,400 °C. Characterizations were done by DTA/TGA, XRD, FTIR, LCR and FESEM instruments at the room temperature. Mullite formation was found to depend on the concentration of the doping ion up to a certain extent. With the addition of tungsten ion, the mullite formation temperature was decreased. The result showed a decrease in mullite phase at higher concentrations of doping ion with respect to undoped mullite. Oxide phases continued to increase with increasing doping concentration, which is mainly responsible for the increment in dielectric value. Dielectric value of the doped mullite was found to decrease with the increase in frequency for all the samples and saturates at higher frequency, which is normal behavior for dielectric ceramics. A.C. conductivity increased with frequency by following Jonscher’s power law. The composite showed maximum dielectric constant of 124.02 sintered at 1,400 °C for 0.05 M at 20 Hz frequency. Highly crystalline mullite whiskers of average dimension 3 μm were obtained at 0.02 tungsten concentration sintered at 1,400 °C. Due to the good dielectric response, comparatively low loss and appropriate nature of the doped mullite it can be used as ceramic capacitors, packaging material for integrated high speed devices. Also, it’s electrical and thermal suitability may prove to be significant as the insulator material of the spark plug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.S. Mazdiyasni, L.M. Brown, Synthesis and mechanical properties of stoichiometric aluminum silicate (mullite). J. Am. Ceram. Soc. 55, 548–552 (1972)

    Article  Google Scholar 

  2. B.L. Metcalfe, J.H. Sant, Synthesis, microstructure, and physical properties of high purity mullite. Trans. J. Br. Ceram. Soc. 74, 193–201 (1975)

    Google Scholar 

  3. S. Kanzaki, H. Tabata, T. Kumazawa, S. Ohta, Sintering and mechanical properties of stoichiometric mullite. J. Am. Ceram. Soc. 68, C6–C7 (1985)

    Article  Google Scholar 

  4. V.V. Vol’khin, I.L. Kazakova, P. Pongratz, E. Halwax, Mullite formation from highly homogeneous mixtures of Al2O3 and SiO2. Inorg. Mater. 36(4), 375–379 (2000)

    Article  Google Scholar 

  5. H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite: a review. J. Eur. Ceram. Soc. 28(4), 329–344 (2008)

    Article  Google Scholar 

  6. S. Rahman, S. Freimann, The Real Structure of Mullite, in Mullite, ed. by H. Schneider, S. Komarneni (Wiley-VCH, Weinheim, 2005), pp. 46–70

    Google Scholar 

  7. H. Schneider, S. Komarneni, Mullite, 2nd edn. (Wiley-VCH, Weinheim, 2006)

    Google Scholar 

  8. R.J. Angel, C.T. Prewitt, Crystal-structure of mullite: a re-examination of the average structure. Am. Mineral. 71, 1476–1482 (1986)

    Google Scholar 

  9. S. Durovic, P. Fejdi, Synthesis and crystal structure of germanium mullite and crystallochemical parameters of D-mullites. Silikaty 2, 97–112 (1976)

    Google Scholar 

  10. H. Saalfeld, V. Guse, Structure refinement of 3-2-mullite (3Al2O3·2SiO2). Neues Jahrbuch Fur Mineralogie-Monatshefte 4, 145–152 (1981)

    Google Scholar 

  11. F. Sahnoune, M. Chegaar, N. Saheb, P. Goeuriot, F. Valdivieso, Algeria kaolinite used for mullite formation. Appl. Clay Sci. 38, 304–310 (2008)

    Article  Google Scholar 

  12. H.F. Chen, M.C. Wang, M.H. Hon, Phase transformation and growth of mullite in kaolin ceramics. J. Eur. Ceram. Soc. 24, 2389–2397 (2004)

    Article  Google Scholar 

  13. V. Viswabaskarana, F.D. Gnanama, M. Balasubramanian, Mullite from clay-reactive alumina for insulating substrate application. Appl. Clay Sci. 25, 29–35 (2004)

    Article  Google Scholar 

  14. V. Viswabaskarana, F.D. Gnanama, M. Balasubramanian, Mullitisation behavior of calcined clay–alumina mixtures. Ceram. Int. 29(5), 561–571 (2003)

    Article  Google Scholar 

  15. D.J. Cassidy, J.L. Woolfrey, B.R. Bartlett, B. Ben-Nissan, The effect of precursor chemistry on the crystallization and densification of sol–gel derived mullite gels and powders. J. Solgel Sci. Technol. 10, 19–30 (1997)

    Article  Google Scholar 

  16. A.M.L. Marques Fonseca, J.M.E. Ferreira, I.M. Miranda Salvado, J.L. Baptista, Mullite based compositions prepared by sol–gel techniques. J. Solgel Sci. Technol. 8, 403–407 (1997)

    Article  Google Scholar 

  17. Y.X. Huang, A.M.R. Senos, J. Rocha, J.L. Baptista, Gel formation in mullite precursors obtained via tetra ethyl orthosilicate (TEOS) pre-hydrolysis. J. Mater. Sci. 32, 105–110 (1997)

    Article  Google Scholar 

  18. F. Mizukami, K. Maeda, M. Toba, T. Sano, S.I. Niwa, Effect of organic ligand used in sol–gel process on the formation of mullite. J. Solgel Sci. Technol. 8, 101–106 (1997)

    Google Scholar 

  19. H. Schneider, Transition metal distribution, in Mullite and Mullite Matrix Composites, ed. by S. Somiya, R.F. Davis, J.A. Pask (The American Ceramic Society, Westerville, 1990), p. 135

    Google Scholar 

  20. P. Sarin, W. Yoon, R.P. Haggerty, C. Chiritescu, N.C. Bhorkar, W.M. Kriven, Effect of transition-metal-ion doping on high temperature thermal expansion of 3:2 mullite: an in situ, high temperature, synchrotron diffraction study. J. Eur. Ceram. Soc. 28, 353–365 (2008)

    Article  Google Scholar 

  21. E.E. Kiss, P.S. Putanov, Influence of transition metal ions on the textural properties of alumina and aluminosilicate. React. Kinet. Catal. Lett. 75(1), 39–45 (2002)

    Article  Google Scholar 

  22. D. Roy, B. Bagchi, S. Das, P. Nandy, Electrical and dielectric properties of sol–gel derived mullite doped with transition metals. Mater. Chem. Phys. 138(1), 375–383 (2013)

    Article  Google Scholar 

  23. A. Beran, D. Voll, H. Schneider, Dehydration and structural development mullite precursors: an FTIR spectroscopic study. J. Eur. Ceram. Soc. 21(14), 2479–2485 (2001)

    Article  Google Scholar 

  24. S. Shoval, M. Boudeulle, S. Yariv, I. Lapides, G. Panczer, Micro-raman and FT-IR spectroscopy study of thermal transformation of St. Claire dickite. Opt. Mater. 16, 319–327 (2001)

    Article  Google Scholar 

  25. S.P. Chaudhuri, S.K. Patra, A.K. Chakraborty, Electrical resistivity of transition metal ion doped mullite. J. Eur. Ceram. Soc. 19, 2941–2950 (1999)

    Article  Google Scholar 

  26. W.J. Walker, M.E. Saccoccia, Alumina ceramic for spark plug insulator, U.S. Patent No. 20110077141 A1 (2011)

  27. Ph. Colomban, Structure of oxide gels and glasses by infrared and Raman scattering: I. aluminus. J. Mater. Sci. 24, 3002–3010 (1989)

    Article  Google Scholar 

  28. M. Daniele, V. Mario, B. Guido, Mullite type structures in the system Al2O3–Me2O (Me = Na, K) and Al2O3–B2O3. J. Am. Ceram. Soc. 75, 1929–1934 (1992)

    Article  Google Scholar 

  29. P. Padmaja, G.M. Anilkumar, P. Mukundan, G. Aruldhas, K.G.K. Warrier, Characterisation of stoichiometric sol–gel by Fourier transform infrared spectroscopy. Int. J. Inorg. Mat. 3, 693–698 (2001)

    Article  Google Scholar 

  30. D.R. Patil, S.A. Lokare, R.S. Devan, S.S. Chougule, C.M. Kanamadi, Y.D. Kolekar, B.K. Chougule, Studies on electrical and dielectric properties of Ba1−xSrxTiO3. Mater. Chem. Phys. 104, 254–257 (2007)

    Article  Google Scholar 

  31. R.A. Abbas, Studing some dielectric properties and effective parameters of composite materials containing of novolak resin. J. Eng. Technol. 8(25), 277–288 (2007)

    Google Scholar 

  32. A. See, J. Hassan, M. Hashim, W.M.D.W. Yusoff, Dielectric variations of barium titanate additions on mullite–kaolinite sample. Solid State Sci. Technol. 16, 197–204 (2008)

    Google Scholar 

  33. G.M. Tsangargi, G.C. Psarras, A.J. Kontopoulos, Dielectric permittivity and loss of an aluminum-filled epoxy resin. J. Compos. Mat. 41, 403–417 (2007)

    Google Scholar 

  34. G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Dielectric dispersion and ac conductivity in—iron particles loaded—polymer composites. Compos. Part A Appl. Sci. Manuf. 34(12), 1187–1198 (2003)

    Article  Google Scholar 

  35. M. Al-Haj Abdallah, Y. Alramadin, M. Ahmad, A. Zihlif, S. Jawad, A. Alnajjar, Electrical characterization of metal fiber-polyester composite. Int. J. Polym. Mat. 37, 33–42 (1997)

    Article  Google Scholar 

  36. S. Sindhu, M.R. Anantharaman, B.P. Thampi, K.A. Malini, P. Kurian, Evaluation of a.c. conductivity of rubber ferrite composites from dielectric measurements. Bull. Mater. Sci. 25(7), 599–607 (2002)

    Article  Google Scholar 

  37. L.H. VanVlack, Elements of Material Science and Engineering, 6th edn. (Addison-Wesley Co, New York, 1989), p. 399

    Google Scholar 

  38. G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Electrical relaxations in polymeric particulate composites of epoxyresin and metal particles. Compos. Part A Appl. Sci. Manuf. 33, 375–384 (2002)

    Article  Google Scholar 

  39. Thermal Conductivity, hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html. Accessed 28 Sept 2014

  40. F.H. Riddle, Ceramic spark-plug insulator. J. Am. Ceram. Soc. 32(11), 333–346 (1949)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to DST and UGC (PURSE program), Government of India, for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhen Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, K., Paul, B.K., Roy, D. et al. High-K tungsten-mullite composite for electronic industrial application: synthesis and study of its microstructure, phase behavior and electrical properties. J Mater Sci: Mater Electron 26, 1172–1180 (2015). https://doi.org/10.1007/s10854-014-2521-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2521-y

Keywords

Navigation