Skip to main content
Log in

Structure of oxide gels and glasses by infrared and raman scattering

Part 1 Alumina

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Optically clear monolithic gels and fine gel powders have been synthesized using various alkoxide hydrolysis reactions. The gels have been characterized using various methods to determine their structures. (X-ray diffraction, DTA, TGA, DSC, IR and Raman spectroscopies). The spectra and the nature of gels depend on the solvent and the hydrolysis conditions (rate, pH, etc.). The use of acetone as solvent allows reduction of the hydrolysis time, from weeks to hours. If the hydrolysis of aluminium sec-butoxide is too rapid, at high pH, crystalline bayerite Al(OH)3 is formed. Regular hydrolysis leads to amorphous optically clear gel with sometimes boehmite (or diaspore) traces. Formation of the (porous) glass (300 to 600°C) and also of the γ-alumina does not modify the Raman spectra strongly whereas large modifications are observed on IR spectra with the evolution of protonic species. The structure of alumina gel and glass is of the spinel type. The α-alumina phase grows above 1200 to 1250°C (above 1050°C if boehmite traces are present).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. SAKKA and K. KAMIYA,J. Non-Crystalline Solids 42 (1980) 403.

    Article  CAS  Google Scholar 

  2. D. W. JOHNSON Jr,Amer. Ceram. Soc. Bull. 64 (1985) 1587.

    Google Scholar 

  3. L. L. HENCH and D. R. ULRICH (ed.), “Ultrastructure Processing of Ceramics, Glasses and Composites” (Wiley, New York, 1984).

    Google Scholar 

  4. J. ZARZYCKI (ed.), “Proceedings of the International Workshop on Glasses and Glass-Ceramic from Gels”, Montpellier, 12–14 September (1985),J. Non-Crystalline Solids 82 (1986).

  5. K. S. MAZDIYASNI,Ceram. Int. 8 (1982) 42.

    Article  CAS  Google Scholar 

  6. O. BOUQUIN, N. BLANCHARD and Ph. COLOMBAN, “Low Temperature Sintering through Sol-Gel Routes”, High Tech Ceramics, edited by P. Vincenzini (Elsevier Science, Amsterdam, 1987) pp. 717–26.

    Google Scholar 

  7. L. C. KLEIN,Ann. Rev. Mater. Sci. 15 (1985) 227.

    Article  CAS  Google Scholar 

  8. Idem, Sol-Gel Technology” (Noyes, New Jersey, 1988).

    Google Scholar 

  9. Ph. COLOMBAN,Adv. Ceram. 21 (1987) 139.

    CAS  Google Scholar 

  10. Idem, Solid State Ionics 21 (1986) 97.

    Article  CAS  Google Scholar 

  11. B. E. YOLDAS and D. P. PARLOW,Amer. Ceram. Soc. Bull. 59 (1980) 640.

    CAS  Google Scholar 

  12. A. C. PIERRE and D. R. UHLMANN,J. Amer. Ceram. Soc. 70 (1987) 28.

    Article  CAS  Google Scholar 

  13. J-Y. CHANE-CHING and L. C. KLEIN,—ibid.71 (1988) 83.

    CAS  Google Scholar 

  14. A. BERTOLLUZA, C. FAGNANO, M. A. MORELLI, V. GOTTARDI and M. GUGLIEMI,J. Non-Crystalline Solids,82 (1986) 127.

    Google Scholar 

  15. D. M. KROL, C. A. M. MULDER and J. G. VAN LIEROP, —ibid.86 (1986) 241.

    Article  CAS  Google Scholar 

  16. L. C. KLEIN and G. KORDAS, “Electron Spin Resonance and Other Spectroscopies Used in Characterizing Sol-Gel Processing”, Materials Research Society Symposium Proceedings, Vol. 73 (Materials Research Society, Pittsburgh, 1986) p. 461.

    Google Scholar 

  17. I. ARTAKI, T. W. ZERDA and J. JONAS,J. Non-Crystalline Solids 81 (1986) 381.

    Article  CAS  Google Scholar 

  18. G. E. WALRAFEN, M. S. HOKMABADI, N. C. HOLMES, W. J. NELLIS and S. HENNINGS,J. Chem. Phys. 82 (1985) 2472.

    Article  CAS  Google Scholar 

  19. R. K. DWIVEDI and G. GODWA,J. Mater. Sci. Lett. 4, (1985) 331.

    Article  CAS  Google Scholar 

  20. B. E. YOLDAS,Amer. Ceram. Soc. Bull.,54 (1975) 289.

    CAS  Google Scholar 

  21. J. Y. CHANE-CHING and L. C. KLEIN,J. Amer. Ceram. Soc. 71 (1988) 86.

    CAS  Google Scholar 

  22. B. E. YOLDAS,Amer. Ceram. Soc. Bull. 59 (1980) 479.

    CAS  Google Scholar 

  23. Powder Diffraction File, Data Book JCPDS (International Centre for Diffraction Data, Swarthmore, 1986).

  24. D. VIVIEN, M. C. STAGMANN and C. MAZIERES,J. Chimie Physique 10 (1973) 1502.

    Google Scholar 

  25. S. CRESTIN-DESJOBERT, F. ORUEGE and R. GOUT,Terra Cognita 7 (1987) 14.

    Google Scholar 

  26. C. KARR Jr. “IR and Raman Spectroscopies of Lunar and Terrestrial Materials”, (Academic, New York, 1975) Chs 8 and 9.

    Google Scholar 

  27. A. B. KISS, G. KERESZTURY and L. FARKAS,Spectrochim. Acta 36A (1980) 653.

    CAS  Google Scholar 

  28. P. PORBES, J. DUBESSY and C. KOSZTOLANYI,Terra Cognita 7 (1987) 16.

    Google Scholar 

  29. Ph. SCHNELL, G. VELASCO and Ph. COLOMBAN,Solid State Ionics 5 (1981) 242.

    Article  Google Scholar 

  30. M. C. STAGMANN, D. VIVIEN and C. MAZIÈRES,Spectrochim. Acta 29A (1973) 1653.

    Google Scholar 

  31. M. C. STEGMANN, D. VIVIEN and C. MAZIÈRES,J. Chimie Physique 71 (1974) 761.

    CAS  Google Scholar 

  32. P. P. MARDILOVICH, A. I. TROKHIMETS and M. V. ZORETSHIC,Z. Prikladnui Spektroskopii 40 (1984) 401.

    Google Scholar 

  33. P. P. MARDILOVICH and A. I. TROKHIMETS,—ibid.36 (1982) 258.

    CAS  Google Scholar 

  34. Ph. COLOMBAN,J. Mater. Sci. Lett. 7 (1988) 1324.

    Article  CAS  Google Scholar 

  35. Ph. COLOMBAN and G. LUCAZEAU,J. Chem. Phys. 72 (1980) 1213.

    Article  CAS  Google Scholar 

  36. D. DOHY, G. LUCAZEAU and D. BOUGEARD,Solid State Ionics 11 (1983) 1.

    Article  CAS  Google Scholar 

  37. P. McMILLAN and M. AKAOGI,Amer. Mineral. 72 (1987) 361.

    CAS  Google Scholar 

  38. P. McMILLAN and B. PIRIOU,J. Non-Crystalline Solids 53 (1982) 279.

    Article  CAS  Google Scholar 

  39. Ph. COLOMBAN,J. Mater. Sci. 24 (1989).

  40. Ph. COLOBAN and A. NOVAK,J. Molec. Struct. 177 (1988) 277.

    Google Scholar 

  41. S. P. PORTO and R. S. KRISHNAM,J. Chem. Phys. 47 (1967) 1009.

    Article  CAS  Google Scholar 

  42. N. BAFFIER, J. C. BADOT and Ph. COLOMBAN,Solid State Ionics 11 (1983) 157.

    Google Scholar 

  43. Ph. COLOMBAN, J. P. BOILOT, A. KAHN and G. LUCAZEAU,Nouveau J. Chimie 2 (1978) 21.

    CAS  Google Scholar 

  44. P. LENFANT, D. PLAS, M. RUFFO and Ph. COLOMBAN,Mater. Res. Bull. 15 (1980) 1817.

    Article  CAS  Google Scholar 

  45. K. IISHII, E. SALJE and Ch. WERNEKE,Phys. Chem. Minerals 4 (1979) 173.

    Google Scholar 

  46. E. SALJE and Chr. WERNEKE,Contr. Minerals Petrol. 79 (1982) 56.

    CAS  Google Scholar 

  47. H. SAALFELD, H. MATHIES and S. K. DATTA,Ber. Dtsch. Keram. Ges. 45 (1968) 212.

    Google Scholar 

  48. Ph. COLOMBAN, “Gel-glass-mullite Transition as a Function of Powder Preparation, Stoichiometry and Zr(Ti) Addition”, Proceedings of the 2nd International Conference on Ceramic Powder Processing Science, 12–14 October (1988) Berchtesgoden.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colomban, P. Structure of oxide gels and glasses by infrared and raman scattering. J Mater Sci 24, 3002–3010 (1989). https://doi.org/10.1007/BF02385660

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02385660

Keywords

Navigation