Skip to main content

Advertisement

Log in

Preparation of mullite-HfN composites through spark plasma sintering: investigation of the microstructure and mechanical properties

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

This study focused on the production of mullite ceramic and composites containing HfN reinforcements through spark plasma sintering. Accordingly, 5, 10 and 15wt% HfN powders with calcined Aluminum nitrate nonahydrate (ANN) and colloidal silica mixture were blended through a high-energy mixer mill in ethanol media. Spark plasma sintering of mullite ceramic and composite was performed under almost the same condition consisting of the initial and final applied pressure of 10 and 50 MPa, respectively, vacuum of 15–25 Pa, and the maximum sintering temperature of 1350 °C. The measured relative densities showed the nearly full densification of all prepared samples. The XRD patterns also depicted perfect mullitization for the mullite sample, while in the sintered composites, mullite, HfN and HfO2 peaks were obtained as the crystalline phases. The uniform distribution of HfN and HfO2 as the reaction products of ANN water desorption was recognized in the microstructure of mullite composites with 5 and 10 wt% HfN samples. Meanwhile, the mullite-15wt% HfN composite displayed some agglomerates and porosities. The attained mechanical properties also showed that Vickers hardness was increased by raising HfN contents. However, the maximum bending strength of 424 ± 25 and fracture toughness of 3.74 ± 0.22 MPa m1/2 were achieved for the composite containing 10 wt% HfN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.E. Lee, Y. Iqbal, Influence of mixing on mullite formation in porcelain. J. Eur. Ceram. Soc. 21, 2583–2586 (2001). https://doi.org/10.1016/S0955-2219(01)00274-6

    Article  CAS  Google Scholar 

  2. K.K. Chawla, Z.R. Xu, J.S. Ha, Processing, Structure, and Properties of Mullite Fiber/Mullite Matrix Composites. J. Eur. Ceram. Soc. 16, 293–299 (1996). https://doi.org/10.1016/0955-2219(95)00136-0

    Article  CAS  Google Scholar 

  3. N.F. Popovskaya, N.M. Bobkova, Mullite-tialite ceramic materials based on chemically precipitated mixtures (a review). Glas. Ceram. (English Transl. Steklo i Keramika) 59, 234–236 (2002). https://doi.org/10.1023/a:1020979228914

    Article  CAS  Google Scholar 

  4. C. Sadik, I.E. El Amrani, A. Albizane, Recent advances in silica-alumina refractory: a review. J. Asian Ceram. Soc. 2, 83–96 (2014). https://doi.org/10.1016/j.jascer.2014.03.001

    Article  Google Scholar 

  5. D. Pereira, G.R.S. Biasibetti, R.V. Camerini, A.S. Pereira, Sintering of mullite by different methods. Mater. Manuf. Process. 29, 391–396 (2014). https://doi.org/10.1080/10426914.2013.864400

    Article  CAS  Google Scholar 

  6. J. Anggono, Mullite ceramics: its properties structure and synthesis. Mullite Ceram. Its Prop. Struct. Synth. 7, 1–10 (2005). https://doi.org/10.9744/jtm.7.1.pp.1-10

    Article  Google Scholar 

  7. D.J. Duval, S.H. Risbud, J.F. Shackelford, Mullite, in Ceram. Glass. Mater, (Springer, New York, 2008), pp. 27–39

  8. H. Schneider, R.X. Fischer, J. Schreuer, Mullite: crystal structure and related properties. J. Am. Ceram. Soc. 98, 2948–2967 (2015). https://doi.org/10.1111/jace.13817

    Article  CAS  Google Scholar 

  9. R. Mishra, R.S. Ningthoujam, High-temperature ceramics, in Mater. Under Extrem. Cond., ed. by A.K. Tyagi, S.B.T.-M.U.E.C. Banerjee (Elsevier, Amsterdam, 2017), pp. 377–409. https://doi.org/10.1016/B978-0-12-801300-7.00011-5.

  10. T.F. Choo, M.A.M. Salleh, K.Y. Kok, K.A. Matori, A review on synthesis of mullite ceramics from industrial wastes. Recycling. 4, 39 (2019). https://doi.org/10.3390/recycling4030039

    Article  Google Scholar 

  11. X. Miao, Porous mullite ceramics from natural topaz. Mater. Lett. 38, 167–172 (1999). https://doi.org/10.1016/S0167-577X(98)00153-0

    Article  CAS  Google Scholar 

  12. A.I. Abdallah, M. Sayed, M. Awaad, A.H.E. Yousif, S.M. Naga, Characterization of in-situ zirconia/mullite composites prepared by sol–gel technique. J. Asian Ceram. Soc. (2021). https://doi.org/10.1080/21870764.2021.1929738

    Article  Google Scholar 

  13. J. Roy, S. Das, S. Maitra, Solgel-processed mullite coating - A review. Int. J. Appl. Ceram. Technol. 12, E71–E77 (2015). https://doi.org/10.1111/ijac.12230

    Article  CAS  Google Scholar 

  14. H. Ohnishi, T. Kawanami, K. Miyazaki, T. Hiraiwa, Mechanical properties of mullite. J. Eur. Ceram. Soc. 16, 633–641 (1986)

    Google Scholar 

  15. E. Nsiah-Baafi, A. Andrews, Fabrication of mullite from lithomargic clay via spark plasma sintering. Ceram. Int. 43, 14277–14280 (2017)

    Article  CAS  Google Scholar 

  16. E. Ghasali, Y. Orooji, A. Faeghi-nia, M. Alizadeh, T. Ebadzadeh, Characterization of mullite-Nd2O3 composite prepared through spark plasma sintering. Ceram. Int. 47, 16200–16207 (2021). https://doi.org/10.1016/j.ceramint.2021.02.198

    Article  CAS  Google Scholar 

  17. K.G.K. Warrier, G.M.A. Kumar, S. Ananthakumar, Densification and mechanical properties of mullite-SiC nanocomposites synthesized through sol–gel coated precursors. Bull. Mater. Sci. 24, 191–195 (2001). https://doi.org/10.1007/BF02710100

    Article  CAS  Google Scholar 

  18. D. Ghahremani, T. Ebadzadeh, A. Maghsodipour, Densification, microstructure and mechanical properties of Mullite-TiC composites prepared by spark plasma sintering. Ceram. Int. 41, 1957–1962 (2015). https://doi.org/10.1016/j.ceramint.2014.07.146

    Article  CAS  Google Scholar 

  19. E. Ghasali, E.K. Saeidabadi, M. Alizadeh, A. Fazili, H. Rajaei, A. Jam, H. Kazemzadeh, T. Ebadzadeh, Preparation of mullite/B4C composites: a comparative study on the effect of heating methods. Ceram. Int. 44, 18743–18751 (2018). https://doi.org/10.1016/j.ceramint.2018.07.104

    Article  CAS  Google Scholar 

  20. S.M.R. Derakhshandeh, M.S. Gohari, E.K. Saeidabadi, A. Jam, H. Rajaei, A. Fazili, M. Alizadeh, E. Ghasali, A.H. Pakseresht, T. Ebadzadeh, Comparison of spark plasma and microwave sintering of mullite based composite: mullite/Ta2O5 reaction. Ceram. Int. 44, 13176–13181 (2018). https://doi.org/10.1016/j.ceramint.2018.04.142

    Article  CAS  Google Scholar 

  21. E.K. Saeidabadi, E. Salahi, T. Ebadzadeh, Preparation mullite/Si3N4 composites by reaction spark plasma sintering and their characterization. Ceram. Int. 45, 5367–5383 (2019). https://doi.org/10.1016/j.ceramint.2018.11.237

    Article  CAS  Google Scholar 

  22. H. Rajaei, M. Farvizi, I. Mobasherpour, M. Zakeri, Effect of spark plasma sintering temperature on microstructure and mechanical properties of mullite—WC composites. Int. J. Refract. Met. Hard Mater. 70, 197–201 (2018). https://doi.org/10.1016/j.ijrmhm.2017.10.012

    Article  CAS  Google Scholar 

  23. Y. Orooji, E. Ghasali, M. Moradi, M.R. Derakhshandeh, M. Alizadeh, M.S. Asl, T. Ebadzadeh, Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering. Ceram. Int. 45, 16288–16296 (2019). https://doi.org/10.1016/j.ceramint.2019.05.154

    Article  CAS  Google Scholar 

  24. Y. Orooji, A. Alizadeh, E. Ghasali, M.R. Derakhshandeh, M. Alizadeh, M.S. Asl, T. Ebadzadeh, Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds. Ceram. Int. 45, 20844–20854 (2019). https://doi.org/10.1016/j.ceramint.2019.07.072

    Article  CAS  Google Scholar 

  25. Y. Orooji, M.R. Derakhshandeh, E. Ghasali, M. Alizadeh, M. ShahediAsl, T. Ebadzadeh, Effects of ZrB2 reinforcement on microstructure and mechanical properties of a spark plasma sintered mullite-CNT composite. Ceram. Int. 45, 16015–16021 (2019). https://doi.org/10.1016/j.ceramint.2019.05.113

    Article  CAS  Google Scholar 

  26. F. Sahnoune, N. Saheb, M. Chegaar, P. Goeuriot, Microstructure and sintering behavior of mullite-zirconia composites. Mater. Sci. Forum. 638–642, 979–984 (2010). https://doi.org/10.4028/www.scientific.net/MSF.638-642.979

    Article  CAS  Google Scholar 

  27. L.S. Cividanes, T.M.B. Campos, L.A. Rodrigues, D.D. Brunelli, G.P. Thim, Review of mullite synthesis routes by sol–gel method. J. Sol-Gel Sci. Technol. 55, 111–125 (2010). https://doi.org/10.1007/s10971-010-2222-9

    Article  CAS  Google Scholar 

  28. P.M. Souto, R.R. Menezes, R.H.G.A. Kiminami, Effect of Y2O3 additive on conventional and microwave sintering of mullite. Ceram. Int. 37, 241–248 (2011). https://doi.org/10.1016/j.ceramint.2010.08.043

    Article  CAS  Google Scholar 

  29. C.Y. Chen, G.S. Lan, W.H. Tuan, Preparation of mullite by the reaction sintering of kaolinite and alumina. J. Eur. Ceram. Soc. 20, 2519–2525 (2000). https://doi.org/10.1016/S0955-2219(00)00125-4

    Article  CAS  Google Scholar 

  30. C.A. Harper, B. Esposito, Handbook of ceramics, glasses, and diamonds (McGraw-Hill, New York, 2001)

    Google Scholar 

  31. H.O. Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications, William Andrew, 1996.

  32. J. Poetschke, V. Richter, A. Michaelis, Fundamentals of sintering nanoscaled binderless hardmetals. Int. J. Refract. Met. Hard Mater. 49, 124–132 (2015)

    Article  CAS  Google Scholar 

  33. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, M. Herrmann, Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv. Eng. Mater. 16, 830–849 (2014)

    Article  CAS  Google Scholar 

  34. E. Ghasali, K. Shirvanimoghaddam, M. Alizadeh, T. Ebadzadeh, Ultra-low temperature fabrication of vanadium carbide reinforced aluminum nano composite through spark plasma sintering. J. Alloys Compd. 753, 433–445 (2018). https://doi.org/10.1016/j.jallcom.2018.04.239

    Article  CAS  Google Scholar 

  35. H. Majidian, E. Ghasali, T. Ebadzadeh, M. Razavi, C. Division, Effect of heating method on microstructure and mechanical properties of zircon reinforced aluminum composites. Mater. Res. 19, 1443–1448 (2016). https://doi.org/10.1590/1980-5373-MR-2016-0390

    Article  CAS  Google Scholar 

  36. E. Ghasali, M. Alizadeh, K. Shirvanimoghaddam, R. Mirzajany, M. Niazmand, A. Faeghi-Nia, T. Ebadzadeh, Porous and non-porous alumina reinforced magnesium matrix composite through microwave and spark plasma sintering processes. Mater. Chem. Phys. 212, 252–259 (2018). https://doi.org/10.1016/j.matchemphys.2018.03.058

    Article  CAS  Google Scholar 

  37. E. Ghasali, M. Alizadeh, A.H. Pakseresht, T. Ebadzadeh, Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering. J. Asian Ceram. Soc. (2017). https://doi.org/10.1016/j.jascer.2017.10.004

    Article  Google Scholar 

  38. E. Ghasali, Y. Palizdar, A. Jam, H. Rajaei, T. Ebadzadeh, Effect of Al and Mo addition on phase formation, mechanical and microstructure properties of spark plasma sintered iron alloy. Mater. Today Commun. 13, 221–231 (2017). https://doi.org/10.1016/j.mtcomm.2017.10.005

    Article  CAS  Google Scholar 

  39. E. Ghasali, T. Ebadzadeh, M. Alizadeh, M. Razavi, Spark plasma sintering of WC-based cermets/titanium and vanadium added composites: a comparative study on the microstructure and mechanical properties. Ceram. Int. 44, 10646–10656 (2018). https://doi.org/10.1016/j.ceramint.2018.03.093

    Article  CAS  Google Scholar 

  40. K. Niihara, R. Morena, D.P.H. Hasselman, Evaluation of K Ic of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett. 1, 13–16 (1982). https://doi.org/10.1007/BF00724706

    Article  CAS  Google Scholar 

  41. E. Ghasali, H. Nouranian, A. Rahbari, H. Majidian, M. Alizadeh, T. Ebadzadeh, Low temperature sintering of aluminum-zircon metal matrix composite prepared by spark plasma sintering. Mater. Res. 19, 1189–1192 (2016). https://doi.org/10.1590/1980-5373-MR-2016-0395

    Article  CAS  Google Scholar 

  42. P. Kang, Q. Zhao, S. Guo, W. Xue, H. Liu, Z. Chao, L. Jiang, G. Wu, Optimisation of the spark plasma sintering process for high volume fraction SiCp/Al composites by orthogonal experimental design. Ceram. Int. 47, 3816–3825 (2021). https://doi.org/10.1016/j.ceramint.2020.09.240

    Article  CAS  Google Scholar 

  43. B. Apak, F.C. Sahin, C-CNT Produced by Spark Plasma Sintering. Acta Phys. Pol. A. 127 (2015) 1029–1031. https://doi.org/10.12693/APhysPolA.127.1029.

  44. B. Pacewska, M. Keshr, Thermal transformations of aluminium nitrate hydrate. Thermochim. Acta. 385, 73–80 (2002). https://doi.org/10.1016/S0040-6031(01)00703-1

    Article  CAS  Google Scholar 

  45. I.F. Myronyuk, V.I. Mandzyuk, V.M. Sachko, V.M. Gunko, Structural and morphological features of disperse alumina synthesized using aluminum nitrate nonahydrate. Nanoscale Res. Lett. 11, 153 (2016). https://doi.org/10.1186/s11671-016-1366-0

    Article  CAS  Google Scholar 

  46. B.C. Schulz, D. Butts, G.B. Thompson, Oxidation behavior of vacuum plasma-sprayed hafnium-tantalum nitrides. J. Mater. Res. 30, 2949–2957 (2015). https://doi.org/10.1557/jmr.2015.191

    Article  CAS  Google Scholar 

  47. T. Glechner, O.E. Hudak, T. Wojcik, L. Haager, F. Bohrn, H. Hutter, O. Hunold, J. Ramm, S. Kolozsvári, E. Pitthan, D. Primetzhofer, H. Riedl, Influence of the non-metal species on the oxidation kinetics of Hf, HfN, HfC, and HfB2 coatings. Mater. Des. 211, 110136 (2021). https://doi.org/10.1016/j.matdes.2021.110136

    Article  CAS  Google Scholar 

  48. R.F. Voitovich, E.A. Pugach, High-temperature oxidation of the nitrides of the group IV transition metals—II. Oxidation of zirconium and hafnium nitrides. Sov. Powder Metall. Met. Ceram. 14, 747–750 (1975). https://doi.org/10.1007/BF00800246

    Article  Google Scholar 

  49. Y.S. Tishchenko, S.M. Lakiza, V.P. Redko, L.M. Lopato, Isothermal sections of the Al2O3–HfO2–Er2O3 phase diagram at 1250 and 1600 °C. Powder Metall. Met. Ceram. 51, 594–601 (2013). https://doi.org/10.1007/s11106-013-9473-2

    Article  CAS  Google Scholar 

  50. D. Shin, R. Arróyave, Z.K. Liu, Thermodynamic modeling of the Hf–Si–O system. Calphad Comput. Coupling Phase Diagrams Thermochem. 30, 375–386 (2006). https://doi.org/10.1016/j.calphad.2006.08.006

    Article  CAS  Google Scholar 

  51. C. Verdon, O. Szwedek, A. Allemand, S. Jacques, Y. Le Petitcorps, P. David, High temperature oxidation of two- and three-dimensional hafnium carbide and silicon carbide coatings. J. Eur. Ceram. Soc. 34, 879–887 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.10.019

    Article  CAS  Google Scholar 

  52. G. Chen, X. Ge, Y. Wang, W. Xing, Y. Guo, Design and preparation of high permeability porous mullite support for membranes by in-situ reaction. Ceram. Int. 41, 8282–8287 (2015). https://doi.org/10.1016/j.ceramint.2015.02.045

    Article  CAS  Google Scholar 

  53. C.H.H. Hsiung, A.J. Pyzik, F. De Carlo, X. Xiao, S.R. Stock, K.T. Faber, Microstructure and mechanical properties of acicular mullite. J. Eur. Ceram. Soc. 33, 503–513 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.09.017

    Article  CAS  Google Scholar 

  54. Z. Hou, B. Cui, L. Liu, Q. Liu, Effect of the different additives on the fabrication of porous kaolin-based mullite ceramics. Ceram. Int. 42, 17254–17258 (2016). https://doi.org/10.1016/j.ceramint.2016.08.020

    Article  CAS  Google Scholar 

  55. M. Rashad, G. Logesh, U. Sabu, M. Balasubramanian, A novel monolithic mullite microfiltration membrane for oil-in-water emulsion separation. J. Memb. Sci. 620, 118857 (2021). https://doi.org/10.1016/j.memsci.2020.118857

    Article  CAS  Google Scholar 

  56. G. Chen, H. Qi, W. Xing, N. Xu, Direct preparation of macroporous mullite supports for membranes by in situ reaction sintering. J. Memb. Sci. 318, 38–44 (2008). https://doi.org/10.1016/j.memsci.2008.01.034

    Article  CAS  Google Scholar 

  57. H. Guo, W. Li, F. Ye, Low-cost porous mullite ceramic membrane supports fabricated from kyanite by casting and reaction sintering. Ceram. Int. 42, 4819–4826 (2016). https://doi.org/10.1016/j.ceramint.2015.11.167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Islamic Azad University of Shahrood for its support.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahebali Manafi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moslemi-firoozabadi, H., Manafi, S. & Ghahremani, D. Preparation of mullite-HfN composites through spark plasma sintering: investigation of the microstructure and mechanical properties. J. Korean Ceram. Soc. 59, 775–786 (2022). https://doi.org/10.1007/s43207-022-00252-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00252-7

Keywords

Navigation