Skip to main content

Advertisement

Log in

Poly (ether amide) and silica nanocomposites derived from sol–gel process

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The sol–gel derived chemically combined organic–inorganic nanocomposites were synthesized from poly(etheramide) and tetraethoxysilane. Reaction of a mixture of 4-aminophenyl ether and 1,3-phenyldiamine with terephthaloyl chloride (TPC) in dimethylacetamide (DMAc) produced the amide chains. These chains were modified with carbonyl chloride end groups using a slight excess of diacid chloride and were then reacted with aminophenyl trimethoxysilane (APTMOS), where the amine group reacted with carbonyl chloride end groups. Hydrolysis/condensation of tetraethoxysilane (TEOS) and alkoxy groups present in APTMOS developed bonding between the polyamide chains and inorganic silica network generated in situ. By changing the relative proportions of the polymer solution and the amount of TEOS, the composition of hybrid films was varied. Thin hybrid films with various concentrations of silica network obtained after evaporation of the solvent were subjected to mechanical, dynamic mechanical thermal and morphological measurements. The results indicate a gradual increase in the modulus (3.84 GPa) and tensile strength (121 MPa) up to 15-wt.% silica relative to the pure polyamide. The elongation at break point and toughness gradually decrease with addition of silica content. These hybrids were found to be thermally stable up to a temperature of 500 °C. The weight retained above 800 °C was roughly proportional to amount of silica in the matrix. The glass transition temperature and the storage moduli increased with increasing silica concentration. The maximum increase in the T g value (358 °C) was observed with 15-wt.% silica. Scanning electron micrographs indicated the uniform distribution of silica in the composites with an average particle size ranging from 9 to 47 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, Boston

    Google Scholar 

  2. Klein LC (1988) Sol–gel technology for thin films, performs, electronics and specialty shapes. Noyes, Park Ridge, NJ

    Google Scholar 

  3. Brinker CJ, Mecartney ML, Sanchez C (1986), (1988) Better ceramics through chemistry, vols II and III. Material research society, Pittsburgh

  4. Hench LL, West JK (1990) Chem Rev 90:33

    Article  CAS  Google Scholar 

  5. Mark JE (1992) J Appl Polym Sci Appl Polym Symp 50:273

    Article  CAS  Google Scholar 

  6. Mark JE (1991) J Inorg Organomet Polym 1:431

    Article  CAS  Google Scholar 

  7. Mark JE, Wang S, Ahmad Z (1995) Macromol Chem Symp 98:731

    CAS  Google Scholar 

  8. Schmidt H (1990) Mater Res Soc Symp Proc 180:961

    CAS  Google Scholar 

  9. Baney RH, Gillion LR, Hirano SI, Schmidt HK (1992) Submicron multiphase materials, vol 27. Material research society, Pittsburgh

    Google Scholar 

  10. Schmidt H (1994) J Sol–Gel Sci Technol 1:217

    Article  CAS  Google Scholar 

  11. Schmidt H (1984) Mater Res Soc Symp Proc 32:327

    CAS  Google Scholar 

  12. Phillip G, Schmidt H (1984) J Non-Cryst Solids 63:283

    Article  Google Scholar 

  13. Schmidt H, Seiferling B (1986) Mater Res Soc Symp Proc 73:739

    CAS  Google Scholar 

  14. Sur GS, Mark JE (1985) Eur Polym J 21(2):1051

    Article  CAS  Google Scholar 

  15. Tamami B, Betrabet C, Wilkes GL (1993) Polym Bull 30:39

    Article  CAS  Google Scholar 

  16. Wang B, Wilkes GL (1994) J Macromol Sci Pure Appl Chem A31(2):249

    CAS  Google Scholar 

  17. Wen J, Vasudevan VJ, Wilkes GL (1995) J Sol–Gel Sci Technol 5:115

    Article  CAS  Google Scholar 

  18. Huang HH, Oler B, Wilkes GL (1987) Macromolecules 20:1322

    Article  CAS  Google Scholar 

  19. Wang B, Wilkes GL (1991) J Polym Sci Part A: Polym Chem Ed 29:905

    Article  CAS  Google Scholar 

  20. Brennan AB, Rodrigues DE, Wang B, Wilkes GL (1992) In: Hench LL, West JK (eds) Chemical processing of advanced materials. Wiley, New York

    Google Scholar 

  21. Betrabet CS, Wilkes GL (1995) Chem Mater 7:535

    Article  CAS  Google Scholar 

  22. Ahmad Z, Wang S, Mark JE (1993) ACS Div Polym Chem Polym Prepr 34(2):745

    CAS  Google Scholar 

  23. Ahmad Z, Sarwar MI, Mark JE (1997) J Mater Chem 7(2):259

    Article  CAS  Google Scholar 

  24. Ahmad Z, Sarwar MI, Mark JE (1997) J Appl Polym Sci 63:1345

    Article  CAS  Google Scholar 

  25. Ahmad Z, Sarwar MI, Krug H, Schmidt H (1997) Int J Polym Mater 39:127

    Article  Google Scholar 

  26. Ahmad Z, Sarwar MI, Wang S, Mark JE (1997) Polymer 38(17):4523

    Article  CAS  Google Scholar 

  27. Ahmad Z, Sarwar MI, Mark JE (1998) J Appl Polym Sci 70:297

    Article  CAS  Google Scholar 

  28. Ahmad Z, Sarwar MI, Krug H, Schmidt H (1997) Die Angew Makromol Chemie 248:139

    Article  CAS  Google Scholar 

  29. Sarwar MI, Zulfiqar S, Ahmad Z (2007) Colloid Polym Sci (Online first)

  30. Sarwar MI, Zulfiqar S, Ahmad Z (2007) Polym. Compos (In press)

  31. Sarwar MI, Zulfiqar S, Ahmad Z (2007) Polym Int (Online first)

  32. Sarwar MI, Zulfiqar S, Ahmad Z (2007) J Sol–Gel Sci Technol 44:41

    Article  CAS  Google Scholar 

  33. Mascia L, Kioul A (1994) J Mater Sci Lett 13(9):641

    Article  CAS  Google Scholar 

  34. Wang S, Ahmad Z, Mark JE (1994) Polym Mater Sci Eng 70(1):305

    Google Scholar 

  35. Wang S, Ahmad Z, Mark JE (1994) Chem Mater 6:943

    Article  CAS  Google Scholar 

  36. Ahmad Z, Wang S, Mark JE (1994) Polym Mater Sci Eng 70(1):303

    Google Scholar 

  37. Chen JP, Ahmad Z, Wang S, Mark JE, Arnold FE (1995) In: Mark JE, Lee CY-C, Bianconi PA (eds) Hybrid organic–inorganic composites. ACS Symp Ser 585, Washington, DC, pp 297

    Google Scholar 

  38. Zulfiqar S, Ahmad Z, Ishaq M, Saeed S, Sarwar MI (2007) J Mater Sci 42:93

    Article  CAS  Google Scholar 

  39. Kausar A, Zulfiqar S, Shabbir S, Ishaq M, Sarwar MI (2007) Polym Bull 59:457

    Article  CAS  Google Scholar 

  40. Mark JE, Jiang C-Y, Tang M-Y (1984) Macromolecules 17:2613

    Article  CAS  Google Scholar 

  41. Brennan AB, Wilkes GL (1991) Polymer 32:733

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks are due to Professor Dr. Gerhard Wegner and Dr. Ingo Lieberwirth of Max Planck Institute for Polymer Research, Mainz, Germany, for providing the SEM measurement facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ilyas Sarwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarwar, M.I., Zulfiqar, S. & Ahmad, Z. Poly (ether amide) and silica nanocomposites derived from sol–gel process. J Sol-Gel Sci Technol 45, 89–95 (2008). https://doi.org/10.1007/s10971-007-1640-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1640-9

Keywords

Navigation