Skip to main content
Log in

A study incorporating nano-sized silica into PVC-blend-based polymer electrolytes for lithium batteries

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Blends of poly(vinyl chloride)-poly(methyl methacrylate) (PVC/PMMA) and poly(vinyl chloride)-poly(ethylene oxide) (PVC/PEO) with lithium triflate (LiCF3SO3) as salt, ethylene carbonate (EC), and dibuthyl phthalate (DBP) as plasticizers and nano-sized silica (SiO2) as filler, the first of its kind in such a study, were prepared using the solution-cast technique. This study affirmed that SiO2 added PVC-PMMA and PVC-PEO-blend-based polymer electrolytes have the ability to retain their ionic conductivity and integrity even after 60 days of storage time at room temperature. The reduction of ionic conductivity values in PVC-PMMA-LiCF3SO3-DBP-EC:SiO2-based and SiO2-free membranes are 9 and 30%, respectively. When PVC-PEO-blend was used, the reduction of ionic conductivity values in PVC-PEO-LiCF3SO3-DBP-EC:SiO2-based and SiO2-free system was 16 and 40%, respectively, after 60 days of storage also at room temperature. The SiO2-based complexes were also found to maintain their conductivity at higher temperatures of 60 °C and 90 °C with progressive storage times. This clearly shows that the SiO2-induced stabilizing effect is maintained even at higher temperatures. Silica has brought the conductivity of polymer electrolytes into the useful realm for materials in lithium polymer battery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gray FM (1997) Polymer electrolytes. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  2. Hou X, Siow KS (2001) Polymer 42:4181

    Article  CAS  Google Scholar 

  3. Latham RJ, Linford RG, Pynenburg R, Schlindwein WS (1992) Electrochim Acta 37:1529

    Article  CAS  Google Scholar 

  4. Walls HJ, Zhou J, Yerian JA, Fedkiw PS, Khan SA, Stowe MK, Baker GL (2000) J Power Sources 89:156

    Article  CAS  Google Scholar 

  5. Carriere D, Barboux P, Chaput F, Spalla O, Boilet JP (2001) Solid State Ionics 145:141

    Article  CAS  Google Scholar 

  6. Quartarone E, Mustarelli P, Magistris A (1998) Solid State Ionics 110:1

    Article  CAS  Google Scholar 

  7. Appetecchi GB, Passerini S (2000) Electrochim Acta 45:2139

    Article  CAS  Google Scholar 

  8. Qiu W, Ma X, Yang Q, Fu Y, Zong X (2004) J Power Sources 138:245

    Article  CAS  Google Scholar 

  9. Laachachi A, Cochez M, Ferriol M, Lopez-Cuesta JM, Leroy E (2005) Mater Lett 59:36

    Article  CAS  Google Scholar 

  10. Ahmad S, Bohidar HB, Ahmad S, Agnihotry SA (2006) Polymer 47:3583

    Article  CAS  Google Scholar 

  11. Capuano F, Croce F, Scrosati B (1991) Electrochem Soc 138:1918

    Article  CAS  Google Scholar 

  12. Appetecchi GB, Crose F, Romagnoli P, Scrosati B, Heider U, Oesten R (1999) Electrochem Commun 1:83

    Article  CAS  Google Scholar 

  13. Appetecchi GB, Romagnoli P, Scrosati B (2001) Electrochem Commun 3:281

    Article  CAS  Google Scholar 

  14. Kim CS, Oh SM (2001) Electrochim Acta 46:1323

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, S., Arof, A.K. A study incorporating nano-sized silica into PVC-blend-based polymer electrolytes for lithium batteries. J Mater Sci 44, 6404–6407 (2009). https://doi.org/10.1007/s10853-009-3883-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3883-z

Keywords

Navigation