Skip to main content
Log in

Morphology evolution, growth mechanism and optical properties of AlN nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present paper, we prepared various kinds of aluminium nitride (AlN) nanostructures utilizing chemical vapor deposition method at atmospheric pressure. Different nanostructures including flower, rod and film were obtained on bare silicon substrates by controlling the growth temperature between 650 and 800 °C. The formation mechanism of these nanostructures is related to vapor–solid process and Ehrlich–Schwoebel barrier. The crystalline phase and morphologies of the as-prepared AlN samples are investigated systematically. Their microstructures are observed by the scanning electron microscope. The X-ray diffraction results demonstrate that the AlN samples exhibit pure phase and grow preferentially along the c-axis. The Raman examination shows there is a strong stress at the interface between the AlN nanostructures and the silicon substrate. The photoluminescence properties indicate that AlN nanostructures possess a broad luminescence band, which can be divided into two subbands by Gaussian fitting, and they are ascribed to nitrogen vacancy as well as the oxygen impurity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.B. Li, T. Zhang, J. Wu, Y.J. Yang, Z.M. Wang, Z.M. Wu, Z. Chen, Y.D. Jiang, Appl. Phys. Lett. 102, 062108 (2013)

    Article  Google Scholar 

  2. S.B. Li, M. Ware, J. Wu, P. Minor, Z.M. Wang, Z.M. Wu, Y.D. Jiang, G.J. Salamo, Appl. Phys. Lett. 101, 122103 (2012)

    Article  Google Scholar 

  3. A. Pierret, C. Bougerol, S.M. Mascaros, A. Cros, H. Renevier, B. Gayral, B. Daudin, Nanotechnology 24, 115704 (2013)

    Article  CAS  Google Scholar 

  4. D.S.P. Lau, X.H. Ji, Semiconductor Nanostructures for Optoelectronic Devices NanoScience and Technology (Springer, Heidelberg, 2012), p. 103

    Book  Google Scholar 

  5. H.T. Chen, X.L. Wu, X. Xiong, W.C. Zhang, L.L. Xu, J. Zhu, P.K. Chu, J. Phys. D Appl. Phys. 41, 025101 (2008)

    Article  Google Scholar 

  6. M. Lei, B. Song, X. Guo, Y.G. Guo, P.G. Li, W.H. Tang, J. Eur. Ceram. Soc. 29, 195 (2009)

    Article  CAS  Google Scholar 

  7. S.C. Shi, C.F. Chen, S. Chattopadhyay, Z.H. Lan, K.H. Chen, L.C. Chen, Adv. Funct. Mater. 15, 781 (2005)

    Article  CAS  Google Scholar 

  8. S.C. Shi, S. Chattopadhyay, C.F. Chen, K.H. Chen, L.C. Chen, Chem. Phys. Lett. 418, 152 (2006)

    Article  CAS  Google Scholar 

  9. J. Zheng, Y. Yang, B. Yu, X.b. Song, X.G. Li, ACS Nano 2, 134 (2008)

    Article  CAS  Google Scholar 

  10. H.T. Wang, Z.P. Xie, Y.G. Wang, W.Y. Yang, Q.F. Zeng, F. Xing, A.N. Li, Nanotechnology 20, 025611 (2009)

    Article  Google Scholar 

  11. Q. Zhao, J. Xu, X.Y. Xu, Z. Wang, D.P. Yu, Appl. Phys. Lett. 85, 5331 (2004)

    Article  CAS  Google Scholar 

  12. Q. Wu, Z. Hu, X.Z. Wang, Y.N. Lu, X. Chen, H. Xu, Y. Chen, J. Am. Chem. Soc. 125, 10176 (2003)

    Article  CAS  Google Scholar 

  13. C. Liu, Z. Hu, Q. Wu, X.Z. Wang, Y. Chen, H. Sang, J.M. Zhu, S.Z. Deng, N.S. Xu, J. Am. Chem. Soc. 127, 1318 (2005)

    Article  CAS  Google Scholar 

  14. Y.B. Tang, H.T. Cong, Z.G. Chen, H.M. Cheng, Appl. Phys. Lett. 86, 233104 (2005)

    Article  Google Scholar 

  15. Y.B. Tang, H.T. Cong, Z.G. Zhao, H.M. Cheng, Appl. Phys. Lett. 86, 153104 (2005)

    Article  Google Scholar 

  16. L.S. Yu, Z. Hu, Y.W. Ma, K.F. Huo, Y. Chen, H. Sang, W.W. Lin, Y.N. Lu, Diam. Relat. Mater. 16, 1636 (2007)

    Article  CAS  Google Scholar 

  17. L.S. Yu, N. Liu, C.Y. He, Q. Wu, Z. Hu, J. Phys. Chem. C 113, 14245 (2009)

    Article  CAS  Google Scholar 

  18. H.B. Li, W.J. Wang, B. Song, R. Wu, J. Li, Y.F. Sun, Y.F. Zheng, J.K. Jian, J. Alloys Compd. 503, L34 (2010)

    Article  CAS  Google Scholar 

  19. L.H. Shen, T.M. Cheng, L.J. Wu, X.F. Li, Q.L. Cui, J. Alloys Compd. 465, 562 (2008)

    Article  CAS  Google Scholar 

  20. Q. Zhao, H.Z. Zhang, X.Y. Xu, Z. Wang, J. Xu, D.P. Yu, Appl. Phys. Lett. 86, 193101 (2005)

    Article  Google Scholar 

  21. J.H. He, R. Yang, Y.L. Chueh, L.J. Chou, L.J. Chen, Z.L. Wang, Adv. Mater. 18, 650 (2006)

    Article  CAS  Google Scholar 

  22. J. Yang, T.W. Liu, C.W. Hsu, L.C. Chen, K.H. Chen, C.C. Chen, Nanotechnology 17, S321 (2006)

    Article  CAS  Google Scholar 

  23. M.C. Wang, N.C. Wu, M.S. Tasi, H.S. Liu, J. Cryst. Growth 216, 69 (2000)

    Article  CAS  Google Scholar 

  24. X.B. Song, Z.G. Guo, J. Zheng, X.G. Li, Y.K. Pu, Nanotechnology 19, 115609 (2008)

    Article  Google Scholar 

  25. Y.K. Byeun, R. Telle, S.H. Jung, S.C. Choi, H.I. Hwang, Chem. Vap. Dep. 16, 72 (2010)

    Article  CAS  Google Scholar 

  26. T. Goto, J. Tsuneyoshi, K. Kaya, T. Hirai, J. Mater. Sci. 27, 247 (1992)

    Article  CAS  Google Scholar 

  27. H.T. Chen, G.S. Chen, X.M. Zhou, W.M. Zhu, X.B. Chen, X.H. Zeng, J. Phys. D Appl. Phys. 44, 505304 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Program of China (No. 2013CB632902) and the Natural Science Foundation of China (Project No. 61076049, 51132005 and 51173097). The Tsinghua University Initiative Scientific Research Program and the Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation are also acknowledged for partial financial support. The Natural Science Foundation of Guizhou Province (No. 20132092) is also acknowledged for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingzhe Hu or Qingfeng Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Hu, M., Chu, X. et al. Morphology evolution, growth mechanism and optical properties of AlN nanostructures. J Mater Sci: Mater Electron 24, 4008–4013 (2013). https://doi.org/10.1007/s10854-013-1354-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1354-4

Keywords

Navigation