Skip to main content
Log in

Thermal and electrical behavior of silver chloride/polyaniline nanocomposite synthesized in aqueous medium using hydrogen peroxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocomposites of AgCl/PANI were synthesized by chemical polymerization/precipitation in aqueous HCl solution using both aniline monomer and AgNO3 precursors in different molar ratio in PVP. Silver ions interact with PVP which restrict the bulk growth of AgCl and keep it in nanosized. During synthesis, AgCl NPs got entrapped in PANI chains through inter-chain hydrogen bonding. TGA studies showed complete decomposition of polymer chains occurred at 30–40 °C higher temperature than PANI alone. DSC studies indicate higher thermal stability of the composite, which is due to more heat flow for decomposition of polymer chains indicating compact packing of polymer matrix with AgCl NPs having large surface area to volume ratio. The TEM image showed spherical NPs were randomly dispersed in a polymer matrix and from XRD data crystalline nature of composite was seen. In FT-IR spectrum strong absorption band of a carbonyl stretching group due to PVP indicates its presence on nanoparticle surface in composite. Thin films of nanocomposite were spin casted on ITO coated glass surface. Electrical conductance was calculated from I–V data which was found to be in the range of 10−2–10−7 S cm−1 depending on the concentration of NPs in it. These composites may find applications in solar cells as semiconductor material and for designing multiarray sensors for quality interpretation of beverages on the basis of their conductance changes using soft computing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.H. Lee, Prog. Polym. Sci. 34, 783 (2009)

    Article  Google Scholar 

  2. A.G. MacDiarmid, Angew. Chem. Int. Ed. 40, 2581 (2001)

    Article  CAS  Google Scholar 

  3. S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Prog. Polym. Sci. 34, 783 (2009)

    Article  CAS  Google Scholar 

  4. P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M.H. Whangbol. Angew. Chem. Int. Ed. 47, 7931 (2008)

    Article  CAS  Google Scholar 

  5. Y. Tian, T. Tatsuma, Chem. Commun. 1810 (2004)

  6. Y. Tian, T. Tatsuma, J. Am. Chem. Soc. 127, 2802 (2005)

    Article  Google Scholar 

  7. K. Matsubara, T. Tatsuma, Adv. Mater. 19, 2802 (2007)

    Article  CAS  Google Scholar 

  8. A. Currao, V.R. Reddy, G. Galzaferri, Chem. Phys. Chem. 5, 720 (2004)

    Article  CAS  Google Scholar 

  9. L. Qi, H. Colfen, M. Antonietti, Nano Lett. 1, 65 (2001)

    Article  Google Scholar 

  10. H. Zhao, E.P. Douglas, B.S. Harrison, K.S. Schanze, Langmiur 17, 8423 (2001)

    Google Scholar 

  11. Q. Wu, Z. Xue, Z. Qi, F. Wang, Polymer 41, 2029 (2000)

    Article  CAS  Google Scholar 

  12. F. Klasovsky, J. Hohmeyer, A. Brückner, M. Bonifer, J. Arras, M. Steffan, M. Lucas, J. Radnik, C. Roth, P. Claus, J. Phys. Chem. C 112, 19555 (2008)

    Article  CAS  Google Scholar 

  13. Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 4, 1963 (2010)

    Article  CAS  Google Scholar 

  14. D. Schurch, A. Currao, S. Sarkar, G. Hodes, G. Calzaferri, J. Phys. Chem. B 106, 12764 (2002)

    Article  Google Scholar 

  15. Y. Tian, T. Tatsuma, J. Am. Chem. Soc. 127, 7632 (2005)

    Article  CAS  Google Scholar 

  16. J. Bai, Y. Li, M. Li, S. Wang, C. Zhang, Q. Yang, Appl. Surf. Sci. 254, 4520 (2008)

    Article  CAS  Google Scholar 

  17. C. Zhang, Q. Liu, N. Zhan, Q. Yang, Y. Song, L. Sun, H. Wang, Y. Li, Colloids Surf. A 353, 64 (2010)

    Article  CAS  Google Scholar 

  18. X. Sui, Y. Chu, S. Xing, C. Liu, Mater. Lett. 58, 1255 (2004)

    Article  CAS  Google Scholar 

  19. X. Feng, Y. Liu, C. Lu, W. Hou, J. Zhu, Nanotechnology 17, 3578 (2006)

    Article  CAS  Google Scholar 

  20. W. Yan, X. Feng, X. Chen, X. Li, J. Zhu, Bioelectrochemistry 72, 21 (2008)

    Article  CAS  Google Scholar 

  21. H. Yin, J. Yang, Macromol. Mater. Eng. 297, 203 (2012)

    Article  CAS  Google Scholar 

  22. C. Ozdemir, F. Yeni, D. Odaci, S. Timur, Food Chem. 119, 380 (2010)

    Article  CAS  Google Scholar 

  23. Q. Zhang, F. Liu, L. Li, G. Pan, S. Shang, J. Nanopart. Res. 13, 415 (2011)

    Article  CAS  Google Scholar 

  24. S. Zhou, M. Xie, X. Yuan, F. Zeng, W. Zou, D. Yuan, Am J Anal Chem 3, 385 (2012)

    Article  CAS  Google Scholar 

  25. K. Majid, S. Awasthi, M.L. Singla, Sens. Actuators, A 135, 113 (2007)

    Article  Google Scholar 

  26. J. Bai, Y. Li, L. Sun, C. Zhang, Q. Yang, Bull. Mater. Sci. 32, 161 (2009)

    Article  CAS  Google Scholar 

  27. Y. Borodko, S.M. Humphrey, T.D. Tilley, H. Frei, G.A. Somoraji, J. Phys. Chem. C 111, 6288–6295 (2007)

    Article  CAS  Google Scholar 

  28. E. Marie, R. Rothe, M. Antonietti, K. Landfester, Macromolecules 36, 3967 (2003)

    Article  CAS  Google Scholar 

  29. R.-C. Wang, Z. Wang, M. Li, H. Li, Chem. Phys. Lett. 341, 431 (2001)

    Article  CAS  Google Scholar 

  30. A. Drury, S. Chaure, M. Kroll, V. Nicolosi, N. Chaure, W.J. Blau, Chem. Mater. 19, 4252 (2007)

    Article  CAS  Google Scholar 

  31. M. Wan, J. Li, J. Polym. Sci. A Polym. Chem. 38, 2359 (2000)

    Article  CAS  Google Scholar 

  32. G.C. Li, Z.K. Zhang, Macromolecules 37, 2683 (2004)

    Article  CAS  Google Scholar 

  33. E.T. Kang, K.G. Neoh, K.L. Tan, Prog. Polym. Sci. 23, 277 (1998)

    Article  CAS  Google Scholar 

  34. Y. Wei, G.W. Jang, K.F. Hsueh, E.M. Scherr, A.G. MacDiarmid, A.J. Epstein, Polym. Mater. Sci. Eng. 61, 916 (1989)

    CAS  Google Scholar 

  35. S.A. Chen, H.T. Lee, Macromolecules 26, 1569 (1993)

    Google Scholar 

  36. M. Kumar, A. Phatak, M. Singh, M.L. Singla, Thin Solid Films 519, 1445 (2010)

    Article  CAS  Google Scholar 

  37. M.L. Singla, S. Awasthi, A. Srivastava, D.V.S. Jain, Sens. Actuators, A 136, 604 (2007)

    Article  Google Scholar 

  38. C. Chen-Ho, J. Appl. Polym. Sci. 89, 2142 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to Dr. Pawan Kapur, Director, Central Scientific Instruments Organization (CSIO), Chandigarh for permitting us to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Singla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vohra, S., Kumar, M., Mittal, S.K. et al. Thermal and electrical behavior of silver chloride/polyaniline nanocomposite synthesized in aqueous medium using hydrogen peroxide. J Mater Sci: Mater Electron 24, 1354–1360 (2013). https://doi.org/10.1007/s10854-012-0933-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0933-0

Keywords

Navigation