Skip to main content
Log in

Synthesis and Electrical Properties of Water-Dispersible Polyaniline with a Polymer Template

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) was synthesized using ammonium persulfate with different amounts of poly(4-sulfonic acid diphenyl aniline) (PSDA) as a template in order to obtain water-dispersible eco-friendly PANI:PSDA composites with enhanced thermoelectric properties. The synthesized composites were characterized by UV-Vis spectroscopy, FT-IR spectroscopy and scanning transmission electron microscopy. The particle sizes and zeta potentials of the PANI:PSDA dispersions were also measured. The electrical conductivity and Seebeck coefficient of PANI increased from 0.39 S m-1 to 3.2 S m-1 and from 21 \(\mu\)V K-1 to 207 \(\mu\)V K-1, respectively. The highest power factor was found in the 40% PSDA composition as 0.09 \(\mu\)W m-1K-2, which is 500 times that of pristine PANI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.K. Das and S. Prusty, Polym.-Plast. Technol. Eng. 51, 1487 (2012).

    CAS  Google Scholar 

  2. C.W. Hu, T. Kawamoto, H. Tanaka, A. Takahashi, K.M. Lee, S.Y. Kao, Y.C. Liao, and K.C. Ho, J. Mater. Chem. C 4, 10293 (2016).

    CAS  Google Scholar 

  3. H. Tsutsumi, S. Yamashita, and T. Oishi, J. Appl. Electrochem. 27, 477 (1997).

    CAS  Google Scholar 

  4. V.J. Babu, S. Vempati, and S. Ramakrishna, Mater. Sci. Appl. 4, 1 (2013).

    CAS  Google Scholar 

  5. Y. Li, B. Ying, L. Hong, and M. Yang, Synth. Met. 160, 455 (2010).

    CAS  Google Scholar 

  6. A. Kumar, V. Kumar, and K. Awasthi, Polym.-Plast. Technol. Eng. 57, 70 (2018).

    CAS  Google Scholar 

  7. M.S. Nahar and J. Zhang, Polym.-Plast. Technol. Eng. 51, 1416 (2012).

    CAS  Google Scholar 

  8. S.I. Abd Razak, S.I. Abd Razak, W.A.W. Abdul Rahman, S. Hashim, and M.Y. Yahya, Polym.-Plast. Technol. Eng. 52, 51 (2013).

    CAS  Google Scholar 

  9. H. Hussin, S.N. Gan, S. Mohamad, and S.W. Phang, Polym. Polym. Compos. 25, 515 (2017).

    CAS  Google Scholar 

  10. S. Biswas, J. Jeong, J.W. Shim, and H. Kim, Appl. Surf. Sci. 483, 819 (2019).

    CAS  Google Scholar 

  11. A.D. Bhavana, Y. Insun, and S.F. Michael, J. Am. Chem. Soc. 126, 52 (2004).

    Google Scholar 

  12. P. Anilkumar and M. Jayakannan, Langmuir 24, 9754 (2008).

    CAS  Google Scholar 

  13. W.A. Marmisollé, E. Maza, S. Moya, and O. Azzaroni, Electrochim. Acta 210, 435 (2016).

    Google Scholar 

  14. K.R. Das and M.J. Antony, Polymer 87, 215 (2016).

    Google Scholar 

  15. B. Massoumi, M. Shafagh-Kalvanagh, and M. Jayman, J. Appl. Polym. Sci. 134, 44720 (2017).

    Google Scholar 

  16. P.J. Kinlen, J. Liu, Y. Ding, and C.R. Graham, et al., Macromolecules 31, 1735 (1998).

    CAS  Google Scholar 

  17. H.D. Tran, D. Li, and R.B. Kaner, Adv. Mater. 21, 1487 (2009).

    CAS  Google Scholar 

  18. Q. Yu, J. Phys. Chem. C 120, 27628 (2016).

    CAS  Google Scholar 

  19. R. Shabanlouei, P.N. Moghadam, and N. Movagharnezhad, et al., Polym. Sci. Ser. B 58, 574 (2016).

    CAS  Google Scholar 

  20. C.P.L. Rubinger, L.C. Costa, R. Faez, C.R. Martins, and R.M. Rubinger, Synth. Met. 159, 523 (2009).

    CAS  Google Scholar 

  21. F.-P. Du, Q.Q. Li, P. Fu, Y.F. Zhang, and Y.G. Wu, J. Mater. Sci. 29, 8666 (2018).

    CAS  Google Scholar 

  22. S. Jayanty, G.K. Prasad, B. Sreedhar, and T.P. Radhakrishnan, Polymer 44, 7265 (2003).

    CAS  Google Scholar 

  23. C.P.L. Rubinger, R. Faez, L.C. Costa, C.R. Martins, and R.M. Rubinger, Polym. Bull. 60, 379 (2008).

    CAS  Google Scholar 

  24. V.F. Ivanov, O.L. Gribkova, K.V. Cheberyako, A.A. Nekrasov, V.A. Tverskoi, and A.V. Vannikov, Russ. J. Electrochem. 40, 299 (2004).

    CAS  Google Scholar 

  25. H.S. Moon and J.-K. Park, Synth. Met. 92, 223 (1998).

    CAS  Google Scholar 

  26. S. Prakash, C.R. Rao, and M. Vijayan, Electrochim. Acta 53, 5704 (2008).

    CAS  Google Scholar 

  27. D. Chattopadhyay and B.M. Mandal, Langmuir 12, 1585 (1996).

    CAS  Google Scholar 

  28. B. Jia, T. Hino, and N. Kuramoto, React. Funct. Polym. 67, 836 (2007).

    CAS  Google Scholar 

  29. J. Jang, J. Ha, and J. Cho, Adv. Mater. 19, 1772 (2007).

    CAS  Google Scholar 

  30. Y.R. Park, J.H. Doh, K. Shin, Y.S. Seo, Y.S. Kim, S.Y. Kim, W.K. Choi, and Y.J. Hong, Org. Electron. 19, 131 (2015).

    CAS  Google Scholar 

  31. A. Abtahi, S. Johnson, S.M. Park, X. Luo, Z. Liang, J. Mei, and K.R. Graham, J. Mater. Chem. A 7, 19774 (2019).

    CAS  Google Scholar 

  32. Y. Zhang, Y.J. Heo, M. Park, and S.J. Park, Polymers 11, 167 (2019).

    CAS  Google Scholar 

  33. K. Aizawa, Y. Chonan, T. Komiyama, H. Yamaguchi, and T. Aoyama, J. Electron. Mater. 46, 5145 (2017).

    CAS  Google Scholar 

  34. M. Khalid, M.A. Tumelero, I. Brandt, V.C. Zoldan, J.J. Acuña, and A.A. Pasa, Indian J. Mater. S. 2013, 1 (2013).

  35. S. Biswas, B. Dutta, and S. Bhattacharya, Appl. Surf. Sci. 292, 420 (2014).

    CAS  Google Scholar 

  36. L. Wang, Q. Yao, W. Shi, S. Qu, and L. Chen, Mater. Chem. Front. 1, 741 (2017).

    CAS  Google Scholar 

  37. F. Hua and E. Ruckenstein, J. Polym. Sci. Part A Polym. Chem. 42, 2179 (2004).

    CAS  Google Scholar 

  38. E. Kang, K. Neoh, and K. Tan, Prog. Polym. Sci. 23, 277 (1998).

    CAS  Google Scholar 

  39. U.M. Chougale, J.V. Thombare, V.J. Fulari, and A.B. Kadam, in 2013 International Conference on Energy Efficient Technologies for Sustainability (2013), pp. 1078-1083.

  40. R.G. Bavane, M.D. Shirsat, and A.M. Mahajan, in Sensors and Transducers ed. by S.Y. Yurish (International Frequency Sensor Association Publishing, Toronto 2010), pp. 63-70.

  41. R.J. Ramalingam, H.A. Al-Lohedan, and T. Radhika, Dig. J. Nanomater. Biosyst. 11, 731 (2016).

    Google Scholar 

  42. J. Laska, J. Mol. Struct. 701, 13 (2004).

    CAS  Google Scholar 

  43. H. Yao, Z. Fan, H. Cheng, X. Guan, C. Wang, K. Sun, and J. Ouyang, Macromol. Rapid Commun. 39, 1700727 (2018).

    Google Scholar 

  44. B.C. Roy, M.D. Gupta, L. Bhowmik, and J.K. Ray, Synth. Met. 100, 233 (1999).

    CAS  Google Scholar 

  45. I. Yamaguchi and Y. Sada, React. Funct. Polym. 83, 155 (2014).

    CAS  Google Scholar 

  46. M.S. Cho, S.Y. Park, J.Y. Hwang, and H.J. Choi, Mater. Sci. Eng. C 24, 15 (2004).

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Scientific Research Project Coordination Center of Yildiz Technical University, Turkey (Project No. 2014-01-02-GEP03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Yazici.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugraskan, V., Yazici, O. & Karaman, F. Synthesis and Electrical Properties of Water-Dispersible Polyaniline with a Polymer Template. J. Electron. Mater. 49, 5460–5466 (2020). https://doi.org/10.1007/s11664-020-08285-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08285-6

Keywords

Navigation