Skip to main content
Log in

Structural, thermal, optical and conductive properties of PAM/PVA polymer composite doped with Ag nanoparticles for electrochemical application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, the chemical preparation of silver nanoparticles (Ag NPs) solution was achieved by decreasing silver salt via the use of sodium borohydride (NaBH4). The particles appeared to have a crystalline nature through the XRD study, with a face-centered cubic (FCC) structure. The formation of silver nanoparticles (Ag NPs) was asserted by the UV, XRD and TEM. An absorption peak at around 430 nm was demonstrated through UV–visible spectrum of the aqueous medium which related to of Ag NPs. The solution casting method was used to prepare new nanocomposites films on the bases of polymer blend which related to of PAM- and PVA-doped with different wt% of Ag NPs. Various analytical techniques were used to characterize the prepared films. It was confirmed through the XRD analysis that there existed a complex formation between polymer blend and Ag NPs. A reduction in the value of the optical bandgap was displayed by UV–Vis with an increase in the concentration of Ag NPs. It was shown through the FTIR spectrum that there existed changes in the FTIR spectrum with dopant concentration indicating the interaction of dopant with the polymer blend. A great improvement in the thermal stability of the composites was proved through the TGA study with the loading of Ag NPs. The ionic conductivity at room temperature was improved by the doping of Ag NPs ions into the polymer blend system. This is attributed to the increase in mobile charge carriers and their mobility. The dielectric values in the studied frequency range indicate a strong dielectric dispersion which increases as the content of the Ag NPs increases. Consequently, these films can be suggested as a suitable application in optical devices and dielectric applications due to the observed improvement in optical properties and ac conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.M. Abutalib, A. Rajeh, Influence of Fe3O4 nanoparticles on the optical, magnetic and electrical properties of PMMA/PEO composites: combined FT-IR/DFT for electrochemical applications. J. Organomet. Chem. 920, 121348 (2020)

    CAS  Google Scholar 

  2. R. Vijaya Kumar, R. Elgamiel, Y. Diamant, A. Gedanken*, J. Norwig, Sonochemical preparation and characterization of nanocrystalline copper oxide embedded in poly(vinyl alcohol) and its effect on crystal growth of copper oxide. Langmuir 17, 1406–1410 (2001)

    Google Scholar 

  3. M.A. Morsi, S.A. El-Khodary, A. Rajeh, Enhancement of the optical, thermal and electrical properties of PEO/PAM: Li polymer electrolyte films doped with Ag nanoparticles. Phys. B 539, 88–96 (2018)

    CAS  Google Scholar 

  4. M.A. Morsi, A.H. Oraby, A.G. Elshahawy, R.M. Abd El-Hady, Preparation, structural analysis, morphological investigation and electrical properties of gold nanoparticles filled polyvinyl alcohol/carboxymethyl cellulose blend. J. Mater. Res. Technol. 8, 5996–6010 (2019)

    CAS  Google Scholar 

  5. S. Kumar, G.K. Prajapati, A.L. Saroj, P.N. Gupta, Structural, electrical and dielectric studies of nano-composite polymer blend electrolyte films based on (70–x) PVA–x PVP–NaI–SiO2. Phys. B 554, 158–164 (2019)

    CAS  Google Scholar 

  6. S. El-Gamal, A.M. El Sayed, Influence of MWCNTs in improving the optical, DC conductivity, and mechanical properties of CMC/PAAM blends. Polym. Eng. Sci. 60, 996–1005 (2020)

    CAS  Google Scholar 

  7. B.K. Choi, Y.W. Kim, H.K. Shin, Ionic conduction in PEO–PAN blend polymer electrolytes. Electrochim. Acta. 45, 1371–1374 (2000)

    CAS  Google Scholar 

  8. G.M. Asnag, A.H. Oraby, A.M. Abdelghany, Effect of gamma-irradiation on the structural, optical and electrical properties of PEO/starch blend containing different concentrations of gold nanoparticles. Radiat. Eff. Defect Solid 174, 579 (2019)

    CAS  Google Scholar 

  9. S. Ramesh, A. Yahaya, A. Arof, Miscibility studies of PVC blends (PVC/PMMA and PVC/PEO) based polymer electrolytes. Solid State Ionics 148, 483–486 (2002)

    CAS  Google Scholar 

  10. M. Pandey, G.M. Joshi, N.N. Ghosh, Electrical performance of lithium ion based polymer electrolyte with polyethylene glycol and polyvinyl alcohol network. Int. J. Polym. Mater. Polym. Biomater. 65, 759–768 (2016)

    CAS  Google Scholar 

  11. N. Rajeswari, S. Selvasekarapandian, S. Karthikeyan, H. Nithya, C. Sanjeeviraja, Lithium ion conducting polymer electrolyte based on Poly (Vinyl Alcohol)—Poly (Vinyl Pyrrolidone) blend with LiClO4. Int. J. Polym. Mater. 61, 1164–1175 (2012)

    CAS  Google Scholar 

  12. D.M. Fernandes, J.L. Andrade, M.K. Lima, M.F. Silva, L.H.C. Andrade, S.M. Lima, A.A.W. Hechenleitner, E.A.G. Pineda, Thermal and photochemical effects on the structure, morphology, thermal and optical properties of PVA/Ni0.04Zn0.96O and PVA/Fe0.03Zn0.97O nanocomposite films. Polym. Degrad. Stab. 98, 1862–1868 (2013)

    CAS  Google Scholar 

  13. A. Abdelrazek, E.M. Elashmawi, I.S. Hezma, A. Rajeh, The accessibility of change of the structural, morphological and thermal properties by intermolecular hydrogen bonding in PEO/PVA blend containing MnCl2. Int. J. Mod. Appl. Phys. 2, 83–96 (2012)

    Google Scholar 

  14. C.V. Subba Rao, M. Ravi, V. Raja, P. Balaji Bhargav, A.K. Sharma, V.V.R. Narasimha Rao, Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications Iran. Polym. J. 21, 531–536 (2012)

    Google Scholar 

  15. I.S. Elashmawi, E.M. Abdelrazek, A.M. Hezma, A. Rajeh, Modification and development of electrical and magnetic properties of PVA/PEO incorporated with MnCl2. Phys. B 434, 57–63 (2014)

    CAS  Google Scholar 

  16. R. Seoudi, A.M.A. Nada, Molecular structure and dielectric properties studies of chitin and its treated by acid, base and hypochlorite. Carbohydr. Polym. 68, 728–733 (2007)

    CAS  Google Scholar 

  17. O.G. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J. Mater. Sci. Mater. Electron. 26, 5303–5309 (2015)

    CAS  Google Scholar 

  18. S.R. Abbas, M.S. Gumaan, R.M. Shalaby, Chromium effects on the microstructural, mechanical and thermal properties of a rapidly solidified eutectic Sn-Ag alloy. Solder. Surf. Mt. Technol. 32, 137–145 (2019)

    Google Scholar 

  19. M. Cheng, L. Huang, Y. Wang, Y. Zhao, J. Tang, Y. Wang, Y. Zhang, M. Hedayati, M.J. Kipper, S.R. Wickramasinghe, Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification. J. Mater. Sci. 54, 252–264 (2019)

    CAS  Google Scholar 

  20. A. Virya, K. Lian, Polyacrylamide-lithium chloride polymer electrolyte and its applications in electrochemical capacitors. Electrochem. Commun. 74, 33–37 (2017)

    CAS  Google Scholar 

  21. X.-M. Zhou, Study on phase change characteristics of PEG/PAM coupling blend. J. Appl. Polym. Sci. 117, 1591–1596 (2010)

    CAS  Google Scholar 

  22. K. Ou, X. Dong, C. Qin, X. Ji, J. He, Properties and toughening mechanisms of PVA/PAM double-network hydrogels prepared by freeze-thawing and anneal-swelling. Mater. Sci. Eng. C. 77, 1017–1026 (2017)

    CAS  Google Scholar 

  23. H. Zhang, D. Zhai, Y. He, Graphene oxide/polyacrylamide/carboxymethyl cellulose sodium nanocomposite hydrogel with enhanced mechanical strength: preparation, characterization and the swelling behavior. RSC Adv. 4, 44600–44609 (2014)

    CAS  Google Scholar 

  24. G. Patel, M.B. Sureshkumar, Preparation of PAM/PVA blending films by solution-cast technique and its characterization: a spectroscopic study Iran. Polym. J. 23, 153–162 (2014)

    CAS  Google Scholar 

  25. S. Awad, S. El-Gamal, A.M. El Sayed, E.E. Abdel-Hady, Characterization, optical, and nanoscale free volume properties of Na-CMC/PAM/CNT nanocomposites. Polym. Adv. Technol. 31, 114–125 (2020)

    CAS  Google Scholar 

  26. S. Iravani, B. Zolfaghari, Green synthesis of silver nanoparticles using Pinus eldarica bark extract. BioMed Res. Int. 2013, 639725 (2013)

    Google Scholar 

  27. S.A. Nouh, K. Benthami, R.M. Samy, A.A. El-Hagg, Effect of gamma radiation on the structure and optical properties of polycarbonate-polybutylene terephthalate/silver nanocomposite films. Chem. Phys. Lett. 741, 137123 (2020)

    CAS  Google Scholar 

  28. I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P.K. Sharma, A. Sharma, Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles. Mater. Chem. Phys. 139, 802–810 (2013)

    CAS  Google Scholar 

  29. S. Mahendia, A.K. Tomar, S. Kumar, Nano-Ag doping induced changes in optical and electrical behaviour of PVA films. Mater. Sci. Eng. B 176, 530–534 (2011)

    CAS  Google Scholar 

  30. B.K. Mehta, M. Chhajlani, B.D. Shrivastava, Green synthesis of silver nanoparticles and their characterization by XRD. J. Phys. Conf. Ser. 836, 012050 (2017)

    Google Scholar 

  31. A.M. Hezma, A. Rajeh, M.A. Mannaa, An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite. Colloids Surf. A 581, 123821 (2019)

    CAS  Google Scholar 

  32. S. Rajendran, M. Sivakumar, R. Subadevi, M. Nirmala, Characterization of PVA–PVdF based solid polymer blend electrolytes. Phys. B 348, 73–78 (2004)

    CAS  Google Scholar 

  33. N.V. Bhat, M.M. Nate, M.B. Kurup, V.A. Bambole, S. Sabharwal, Effect of γ-radiation on the structure and morphology of polyvinyl alcohol films. Nucl. Instr. Methods Phys. Res. Sect. B 237, 585–592 (2005)

    CAS  Google Scholar 

  34. J. Jung, J. Jang, J. Ahn, Characterization of a polyacrylamide solution used for remediation of petroleum contaminated soils. Materials (Basel). 9, 16 (2016)

    Google Scholar 

  35. S. El-Gamal, A.M. El Sayed, Physical properties of the organic polymeric blend (PVA/PAM) modified with MgO nanofillers. J. Compos. Mater. 53, 2831–2847 (2019)

    CAS  Google Scholar 

  36. Y. Madhava Kumar, K. Bhagyasree, N.O. Gopal, C. Ramu, H. Nagabhushana, Structural, thermal and optical properties of Mn2+ doped methacrylic acid—ethyl acrylate (MAA:EA) copolymer films. Z. Phys. Chem. 231, 1039–1055 (2017)

    CAS  Google Scholar 

  37. G.G. Ramteke, D.M. Pimpalshende, A.S. Lanje, Analysis of the influence of Mn2+ incorporation on structural and spectroscopic features of CdS nanoparticles. Int. J. Sci. Res. Phys. Appl. Sci. 6, 7–14 (2018)

    Google Scholar 

  38. A. Swaminathan, R. Ravi, M. Sasikumar, M. Dasaiah, G. Hirankumar, S. Ayyasamy, Preparation and characterization of PVA/PAM/NH4SCN polymer film by ultrasound-assisted solution casting method for application in electric double layer capacitor. Ionics 26, 4113–4128 (2020)

    CAS  Google Scholar 

  39. A.M. El Sayed, S. Taha, G. Said, F. Yakuphanoglu, Controlling the structural and optical properties of nanostructured ZnO thin films by cadmium content. Superlatt. Microstruct. 65, 35–47 (2014)

    Google Scholar 

  40. A. Rajeh, H.M. Ragab, M.M. Abutalib, Co doped ZnO reinforced PEMA/PMMA composite: structural, thermal, dielectric and electrical properties for electrochemical applications. J. Mol. Struct. 1217, 128447 (2020)

    CAS  Google Scholar 

  41. A. Bhat Kalambettu, P. Rajangam, S. Dharmalingam, The effect of chlorotrimethylsilane on bonding of nano hydroxyapatite with a chitosan–polyacrylamide matrix. Carbohydr. Res. 352, 143–150 (2012)

    CAS  Google Scholar 

  42. A.M. Dumitrescu, G. Lisa, A.R. Iordan, F. Tudorache, I. Petrila, A.I. Borhan, M.N. Palamaru, C. Mihailescu, L. Leontie, C. Munteanu, Ni ferrite highly organized as humidity sensors. Mater. Chem. Phys. 156, 170–179 (2015)

    CAS  Google Scholar 

  43. P. Natkański, P. Kuśtrowski, A. Białas, Z. Piwowarska, M. Michalik, Thermal stability of montmorillonite polyacrylamide and polyacrylate nanocomposites and adsorption of Fe(III) ions. Appl. Clay Sci. 75–76, 153–157 (2013)

    Google Scholar 

  44. Y.L. Luo, L.-L. Chen, F. Xu, Q.-S. Feng, Fabrication and characterization of copper nanoparticles in PVA/PAAm IPNs and swelling of the resulting nanocomposites. Met. Mater. Int. 18, 899–908 (2012)

    CAS  Google Scholar 

  45. C. Zhou, Q. Wu, A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloids Surf B 84, 155–162 (2011)

    CAS  Google Scholar 

  46. K.S. Lee, M.A. El-Sayed, Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 110, 19220–19225 (2006)

    CAS  Google Scholar 

  47. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B. 3, 668–677 (2003)

    Google Scholar 

  48. E.C. Njagi, H. Huang, L. Stafford, H. Genuino, H.M. Galindo, J.B. Collins, G.E. Hoag, S.L. Suib, Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27, 264–271 (2011)

    CAS  Google Scholar 

  49. S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011)

    CAS  Google Scholar 

  50. S.B. Aziz, R.T. Abdulwahid, H.A. Rsaul, H.M. Ahmed, In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region. J. Mater. Sci. Mater. Electron. 27, 4163–4171 (2016)

    CAS  Google Scholar 

  51. A.M. Hemza, I.S. Elashmawi, A. Rajeh, M. Kamal, Spectroscopic and thermal properties of PU/PVC doped with multi walled carbon nanotube. Der Pharm. Chem. 8, 201–208 (2016)

    Google Scholar 

  52. M.A. Morsi, A. Rajeh, A.A. Menazea, Nanosecond laser-irradiation assisted the improvement of structural, optical and thermal properties of polyvinyl pyrrolidone/carboxymethyl cellulose blend filled with gold nanoparticles. J. Mater. Sci. Mater. Electron. 30, 2693–2705 (2019)

    CAS  Google Scholar 

  53. M.M. Abutalib, A. Rajeh, Influence of MWCNTs/Li-doped TiO2 nanoparticles on the structural, thermal, electrical and mechanical properties of poly (ethylene oxide)/poly (methylmethacrylate) composite. J. Organomet. Chem. 918, 121309 (2020)

    CAS  Google Scholar 

  54. G.M. Asnag, A.H. Oraby, A.M. Abdelghany, Green synthesis of gold nanoparticles and its effect on the optical, thermal and electrical properties of carboxymethyl cellulose. Compos. B 172, 436–446 (2019)

    CAS  Google Scholar 

  55. R.F. Bhajantri, V. Ravindrachary, A. Harisha, C. Ranganathaiah, G.N. Kumaraswamy, Effect of barium chloride doping on PVA microstructure: positron annihilation study. Appl. Phys. A. 87, 797–805 (2007)

    CAS  Google Scholar 

  56. A.M. Hezma, I.S. Elashmawi, E.M. Abdelrazek, A. Rajeh, M. Kamal, Enhancement of the thermal and mechanical properties of polyurethane/polyvinyl chloride blend by loading single walled carbon nanotubes. Prog. Nat. Sci. Mater. Int. 27, 338–343 (2017)

    CAS  Google Scholar 

  57. A.M. Hezma, A. Rajeh, Spectroscopic and drug delivery studies of moxifloxacin loaded polylactic acid/polycaprolacton polymeric matrix for medical application. Res. J. Pharm. Biol. Chem. Sci. 8, 1163–1170 (2017)

    CAS  Google Scholar 

  58. K. Deshmukh et al., Impedance spectroscopy, ionic conductivity and dielectric studies of new Li+ ion conducting polymer blend electrolytes based on biodegradable polymers for solid state battery applications. J. Mater. Sci. 27, 11410–11424 (2016)

    CAS  Google Scholar 

  59. A.W. Coats, J.P. Redfern, Kinetic parameters from thermogravimetric data. Nature 201, 68–69 (1964)

    CAS  Google Scholar 

  60. A.M. Hezma, I.S. Elashmawi, A. Rajeh, M. Kamal, Change spectroscopic, thermal and mechanical studies of PU/PVC blends. Phys. B 495, 4–10 (2016)

    CAS  Google Scholar 

  61. M.S. Gumaan, R.M. Shalaby, M.K.M. Yousef, E.A. Ali, E.E. Abdel-Hady, Nickel effects on the structural and some physical properties of the eutectic Sn-Ag lead-free solder alloy. Solder. Surf. Mt. Technol. 31, 40–51 (2019)

    Google Scholar 

  62. E.M. Abdelrazek, I.S. Elashmawi, A.M. Hezma, A. Rajeh, M. Kamal, Effect of an encapsulate carbon nanotubes (CNTs) on structural and electrical properties of PU/PVC nanocomposites. Phys. B 502, 48–55 (2016)

    CAS  Google Scholar 

  63. A. Rajeh, M.A. Morsi, I.S. Elashmawi, Enhancement of spectroscopic, thermal, electrical and morphological properties of polyethylene oxide/carboxymethyl cellulose blends: combined FT-IR/DFT. Vacuum 159, 430–440 (2019)

    CAS  Google Scholar 

  64. M.S. El-Bana, G.H. Mohammed, A.M. El-Sayed et al., Preparation and characterization of PbO/carboxymethyl cellulose/polyvinylpyrrolidone nanocomposite films. Polym. Compos. 39, 3712–3725 (2018)

    CAS  Google Scholar 

  65. B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014)

    CAS  Google Scholar 

  66. R. Bouchet, S. Miller, M. Duclot, J.L. Souquet, A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole. Solid State Ionics 145, 69–78 (2001)

    CAS  Google Scholar 

  67. M.M. Abutalib, A. Rajeh, Influence of ZnO/Ag nanoparticles doping on the structural, thermal, optical and electrical properties of PAM/PEO composite. Phys. B 578, 411796 (2020)

    CAS  Google Scholar 

  68. M.M. Abutalib, A. Rajeh, Preparation and characterization of polyaniline/sodium alginate-doped TiO2 nanoparticles with promising mechanical and electrical properties and antimicrobial activity for food packaging applications. J. Mater. Sci. Mater. Electron. 31, 9430–9442 (2020)

    CAS  Google Scholar 

  69. A.M. Abdelghany, A.H. Oraby, G.M. Asnag, Structural, thermal and electrical studies of polyethylene oxide/starch blend containing green synthesized gold nanoparticles. J. Mol. Struct. 1180, 15–25 (2019)

    CAS  Google Scholar 

  70. M.A. Morsi, A. Rajeh, A.A. Al-Muntaser, Reinforcement of the optical, thermal and electrical properties of PEO based on MWCNTs/Au hybrid fillers: nanodielectric materials for organoelectronic devices. Compos. Part B 173, 106957 (2019)

    CAS  Google Scholar 

  71. T. Rhimi, G. Leroy, B. Duponchel, K. Khirouni, S. Guermazi, M. Toumi, AC and DC conductivity study of LiH2PO4 compound using impedance spectroscopy. Ionics (Kiel). 24, 1305–1312 (2018)

    CAS  Google Scholar 

  72. F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, Electrical relaxation in a glass-forming molten salt. J. Phys. Chem. 78, 639–648 (1974)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Ragab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragab, H.M., Rajeh, A. Structural, thermal, optical and conductive properties of PAM/PVA polymer composite doped with Ag nanoparticles for electrochemical application. J Mater Sci: Mater Electron 31, 16780–16792 (2020). https://doi.org/10.1007/s10854-020-04233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04233-6

Navigation