Skip to main content
Log in

Raman scattering characterization of SF-PECVD-grown hydrogenated microcrystalline silicon thin films using growth surface electrical bias

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of hydrogenated microcrystalline films were grown by a novel thin film deposition method using the Saddle Field Plasma Enhanced Chemical Vapour Deposition system. We show that the surface potential during growth strongly affects the microcrystalline character of the films, as quantified by Raman scattering. This effect can be reproduced on both conductive and non-conductive substrates. Films grown close to the threshold for microcrystalline growth exhibit laser-induced crystallization at low laser intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Meier et al., Mater. Res. Soc. Symp. Proc. 420, 3 (1996)

    CAS  Google Scholar 

  2. A. Matsuda, Thin Solid Films 337, 1 (1999)

    Article  CAS  Google Scholar 

  3. B. Kalache, A.I. Kosarev, R. Vanderhaghen, P. Roca I Cabarrocas, J. Non-Cryst. Solids 299–302, 63 (2002)

    Article  Google Scholar 

  4. V. Dalal, J. Graves, J. Leib, Appl.Phys.Lett. 85, 1413 (2004)

    Article  CAS  Google Scholar 

  5. E. Johnson, N.P. Kherani, S. Zukotynski, Mater. Res. Soc. Symp. Proc. 862, A19.6 (2005)

    Google Scholar 

  6. T. Allen, I. Milostnaya, D. Yeghikyan, K. Leong, F. Gaspari, N. Kherani, T. Kosteski, and S. Zukotynski, Mater. Res. Soc. Symp. Proc. 762, A6.10 (2003).

    Google Scholar 

  7. I. Milostnaya, T. Allen, F. Gaspari, N. Kherani, D. Yeghikyan, W. Roes, T. Kosteski, S. Zukotynski, Mater. Res. Soc. Symp. Proc. 762, A6.15 (2003)

    Google Scholar 

  8. C.A.M. De Vries, W.G.M. Van Den Hoek, J. Appl. Phys. 58, 2074 (1985)

    Article  CAS  Google Scholar 

  9. E. Bustarret, M.A. Hachicha, M. Brunel, Appl. Phys. Lett. 52, 1675 (1988)

    Article  CAS  Google Scholar 

  10. D. Beeman, R. Tsu, M.F. Thorpe, Phys. Rev. B 32, 874 (1985)

    Article  CAS  Google Scholar 

  11. R. Tsu, J. Gonzalez-Hernandez, S.S. Chao, S.C. Lee, K. Tanaka, Appl. Phys. Lett. 40, 534 (1982)

    Article  CAS  Google Scholar 

  12. A.T. Voutsas, M.K. Hatalis, J. Boyce, A. Chiang, J. Appl. Phys. 78, 6999 (1995)

    Article  CAS  Google Scholar 

  13. P. Roca I Cabarrocas, N. Layadi, T. Heitz, B. Drévillon, I. Solomon, Appl. Phys. Lett. 66, 3609 (1995)

    Article  CAS  Google Scholar 

  14. Y. He, C. Yin, G. Cheng, L. Wang, X. Liu, G.Y. Hu, J. Appl. Phys. 75, 797 (1994)

    Article  CAS  Google Scholar 

  15. S. Vepøek, F. -A. Sarott, Z. Iqbal, Phys. Rev. B 36, 3344 (1987)

    Article  CAS  Google Scholar 

  16. G. Viera, S. Huet, L. Boufendi, J. Appl. Phys. 90, 4175 (2001)

    Article  CAS  Google Scholar 

  17. H.S. Mavi, A.K. Shukla, S.C. Abbi, K.P. Jain, J. Appl. Phys. 66, 5322 (1989)

    Article  CAS  Google Scholar 

  18. K.P. Jain, A.K. Shukla, R. Ashokan, S.C. Abbi, M. Balkanski, Phys. Rev. B 32, 6688 (1985)

    Article  CAS  Google Scholar 

  19. A.K. Shukla, K.P. Jain, Phys. Rev. B 35 9240 (1987)

    Article  CAS  Google Scholar 

  20. A. Sunda-Meya, D. Gracin, J. Dutta, B. Vlahovic, R.J. Nemanich, Mater. Res. Soc. Symp. Proc. 664, A6.9.1 (2001)

    CAS  Google Scholar 

  21. P. Lengsfeld, N.H. Nickel, W. Fuhs, Appl. Phys. Lett. 76, 1680 (2000)

    Article  CAS  Google Scholar 

  22. C. Santato, G. Mattei, W. Ruihua, F. Mecarini, J. Appl. Phys. 95, 5366 (2004)

    Article  CAS  Google Scholar 

  23. J.G. Maillou, E.L. Mathé, J.C. Desoyer, S. De Unamuno, E. Fogarassy, Appl. Surf. Sci. 43, 150 (1989)

    Article  CAS  Google Scholar 

  24. D. Toet, P. M. Smith, T. W. Sigmon, T. Takehara, C.C. Tsai, W. R. Harshbarger, M.O. Thompson, J. Appl. Phys. 85, 7914 (1999)

    Article  CAS  Google Scholar 

  25. A. Hadjadj, L. Boufendi, S. Huet, S. Schelz, P. Roca I Cabarrocas, H. Estrade-Szwarckopf, and B. Rousseau, J. Vac. Sci. Technol. A 18, 529 (2000)

    Article  CAS  Google Scholar 

  26. C. Smit, R.A.C.M.M. Van Swaaij, H. Donker, A.M.H.N. Petit, W.M.M. Kessels, M.C.M. Van De Sanden, J. Appl. Phys. 94, 3582 (2003)

    Article  CAS  Google Scholar 

  27. G. Viera, P. Roca I Cabarrocas, J. Costa, S. Martinez, E. Bertran, Mater. Res. Soc. Symp. Proc. 507, (1998) 933

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Natural Sciences and Engineering Research Council of Canada, ARISE Technologies, and Materials and Manufacturing Ontario.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, E.V., Kherani, N.P. & Zukotynski, S. Raman scattering characterization of SF-PECVD-grown hydrogenated microcrystalline silicon thin films using growth surface electrical bias. J Mater Sci: Mater Electron 17, 801–813 (2006). https://doi.org/10.1007/s10854-006-0026-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-0026-z

Keywords

Navigation