Skip to main content
Log in

Effects of substrate temperature on structural, optical and morphological properties of hydrogenated nanocrystalline silicon thin films prepared by inductively coupled plasma chemical vapor deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited on glass substrate by inductively coupled plasma chemical vapor deposition technique in this paper. The structural, optical, and morphological properties of samples were investigated and found to be strongly dependent on the substrate temperature. X-ray diffraction patterns show silicon film deposited at 25 °C is almost entirely amorphous, however, as the substrate temperature increased from 100 to 300 °C, the grain size of samples increases from 4.1 to 14.6 nm indicates improved crystalline quality. Raman spectroscopy revealed the nc-Si:H films contain crystalline, amorphous and an intermediate structure, and the crystallinity of sample deposited at 300 °C reaching a maximum value of 56 %. The optical absorption spectra of nc-Si:H films show hydrogen content and quantum confinement effect have strong influence on the optical band gap. Atomic force microscopy images show good coincidence with above results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.P. Zhou, D.Y. Wei, S. Xu, S.Q. Xiao, L.X. Xu, S.Y. Huang, Y.N. Guo, W.S. Yan, M. Xu, J. Appl. Phys. 110, 023517 (2011)

    Article  Google Scholar 

  2. G.B. Tong, Z. Aspanut, M.R. Muhamad, S.A. Rahman, Vacuum 86, 1195–1202 (2012)

    Article  Google Scholar 

  3. P. Dutta, S. Paul, D. Galipeau, V. Bommisetty, Thin Solid Films 518, 6811–6817 (2010)

    Article  Google Scholar 

  4. A. Banerjee, F.S. Liu, D. Beglau, S. Tining, G. Pietka, J. Yang, S. Guha, IEEE J. Photovolt. 2, 104–108 (2012)

    Article  Google Scholar 

  5. L. Zhang, H.L. Shen, X.F. Jiang, B. Qian, Z.D. Han, H.H. Hou, J. Mater. Sci.: Mater. Electron. 24, 4209–4212 (2013)

    Google Scholar 

  6. A.A.D.T. Adikaari, N.K. Mudugamuwa, S.R.P. Silva, Sol. Energy Mater. Sol. Cells 92, 634–638 (2008)

    Article  Google Scholar 

  7. J.H. Shim, S. Im, Y.J. Kim, N.H. Cho, Thin Solid Films 503, 55–59 (2006)

    Article  Google Scholar 

  8. B.T. Goh, C.K. Wah, Z. Aspanut, S.A. Rahman, J. Mater. Sci.: Mater. Electron. 25, 286–296 (2014)

    Google Scholar 

  9. S.E. Lee, Y.C. Park, J. Korean Phys. Soc. 65, 651–656 (2014)

    Article  Google Scholar 

  10. N.A. Bakr, A.M. Funde, V.S. Waman, M.M. Kamble, R.R. Hawaldar, D.P. Amalnerkar, V.G. Sathe, S.W. Gosavi, S.R. Jadkar, J. Phys. Chem. Solids 72, 685–691 (2011)

    Article  Google Scholar 

  11. Y. Sakawa, N. Koshikawa, T. Shoji, Appl. Phys. Lett. 69, 1695–1696 (1996)

    Article  Google Scholar 

  12. S. Xu, K.N. Ostrikov, Y. Li, E.L. Tsakadze, I.R. Jones, Phys. Plasmas 8, 2549–2557 (2001)

    Article  Google Scholar 

  13. B.Y. Moon, J.H. Youn, S.H. Won, J. Jang, Sol. Energy Mater. Sol. Cells 69, 139–145 (2001)

    Article  Google Scholar 

  14. A. Radhakrishnan, P. Rejani, B. Beena, Int. J. Nano Dimens. 5, 519–524 (2014)

    Google Scholar 

  15. H.B. Jeong, K.N. Kim, N.E. Lee, G.Y. Yeom, J. Korean Phys. Soc. 63, 1140–1145 (2013)

    Article  Google Scholar 

  16. X.Y. Gao, J.T. Zhao, Y.F. Liu, Q.G. Lin, Y.S. Chen, J.H. Gu, S.E. Yang, J.X. Lu, Acta Phys. Polon. A 115, 738–741 (2009)

    Google Scholar 

  17. S. Mukhopadhyay, C. Das, S. Ray, J. Phys. D Appl. Phys. 37, 1736–1741 (2004)

    Article  Google Scholar 

  18. W. Yu, L. Zhang, B.Z. Wang, W.B. Lu, L.W. Wang, G.S. Fu, Chin. Phys. Soc. 55, 1936–1941 (2006)

    Google Scholar 

  19. S.B. Amor, M. Atyaoui, R. Bousbih, I. Haddadi, W. Dimassi, H. Ezzaouia, Sol. Energy 108, 126–134 (2014)

    Article  Google Scholar 

  20. S.J. Lee, S.H. Kim, D.W. Kim, K.H. Kim, B.K. Kim, J. Jang, Cells 95, 81–83 (2011)

    Google Scholar 

  21. C. Das, S. Ray, Thin Solid Films 403–404, 81–85 (2002)

    Article  Google Scholar 

  22. N. Budini, P.A. Rinaldi, J.A. Schmidt, R.D. Arce, R.H. Buitrago, Thin Solid Films 518, 5349–5354 (2010)

    Article  Google Scholar 

  23. A. Remolina, B.M. Monroy, M.F. García-Sánchez, A. Ponce, M. Bizarro, J.C. Alonso, A. Ortiz, G. Santana, Nanotechnology 20, 245604 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Sichuan Province Science and Technology Supporting Program (2015GZ0194) and Shuangliu County Science and Technology Achievements Incubator Program (13H012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingyu Yang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Zhu, X., Sun, H. et al. Effects of substrate temperature on structural, optical and morphological properties of hydrogenated nanocrystalline silicon thin films prepared by inductively coupled plasma chemical vapor deposition. J Mater Sci: Mater Electron 26, 7790–7796 (2015). https://doi.org/10.1007/s10854-015-3426-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3426-0

Keywords

Navigation