Skip to main content
Log in

Accelerating Li+ intercalation kinetics through synergetic modification in Li-rich cathode

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the pursuit of high-energy density lithium-ion battery, Li-rich Mn-based oxide cathode has gained great attention with unexpectedly high capacity, low cost and excellent thermal stability. However, the cause for the sluggish kinetics remains a mystery, hindering the application of Li-rich cathode material. Here, we reveal the interfacial instability is the driving force for the sluggish kinetics, which severely blocks the interfacial Li-ion transport and triggers fast battery failure. Through rice-husk carbon (RHC) and spinel phase modification on Li-rich Mn-based oxide Li1.2Ni0.16Mn0.56Co0.08O2 (LNMC), the poor lithium ion diffusion and interfacial degradation can be effectively prevented, delivering a high specific capacity of around 300 mAh/g and excellent rate performance. These findings provide a universal method to prepare high electrochemical performance Li-rich oxide materials.

Graphical abstract

Through synergetic modification, the Li-rich Mn-based cathode delivers a high available capacity of 300 mAh/g via accelerated Li+ intercalation kinetics

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Winter M, Barnett B, Xu K (2018) Before Li ion batteries. Chem Rev 118(23):11433–11456

    Article  CAS  Google Scholar 

  2. Tarascon J-M, Armand M (2011) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  Google Scholar 

  3. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    Article  CAS  Google Scholar 

  4. McCalla E, Abakumov AM, Saubanère M, Foix D, Berg EJ, Rousse G, Doublet M-L, Gonbeau D, Novák P, Van Tendeloo G (2015) Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350(6267):1516–1521

    Article  CAS  Google Scholar 

  5. Xu H, Guo S, Zhou H (2019) Review on anionic redox in sodium-ion batteries. J Mater Chem A 7(41):23662–23678

    Article  CAS  Google Scholar 

  6. Zuo W, Luo M, Liu X, Wu J, Liu H, Li J, Winter M, Fu R, Yang W, Yang Y (2020) Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques. Energy Environ Sci 13(12):4450–4497

    Article  CAS  Google Scholar 

  7. Zhang M, Liu H, Liu Z, Fang C, Meng YS (2018) Modified coprecipitation synthesis of mesostructure-controlled Li-rich layered oxides for minimizing voltage degradation. ACS Appl Energy Mater 1(7):3369–3376

    Article  CAS  Google Scholar 

  8. Wu J, Cui Z, Wu J, Xiang Y, Liu H, Zheng S, Yang W, Yang Y (2020) Suppression of voltage-decay in Li2MnO3 cathode via reconstruction of layered-spinel coexisting phases. J Mater Chem A 8(36):18687–18697

    Article  CAS  Google Scholar 

  9. Zhao R, Wu M, Jiao P, Wang X, Zhu J, Zhao Y, Zhang H, Zhang K, Li C, Ma Y, Chen Y (2023) A double-layer covered architecture with spinel phase induced by LiPP for Co-free Li-rich cathode with high-rate performance and long lifespan. Nano Res 16(5):6805–6814

    Article  CAS  Google Scholar 

  10. Yang W (2018) Oxygen release and oxygen redox. Nat Energy 3(8):619–620

    Article  CAS  Google Scholar 

  11. Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Cho J, Zhang JG (2017) Li-and Mn-rich cathode materials: challenges to commercialization. Adv Energy Mater 7(6):1601284

    Article  Google Scholar 

  12. Sun S, Zhao CZ, Yuan H, Fu ZH, Chen X, Lu Y, Li YF, Hu JK, Dong J, Huang JQ, Ouyang M, Zhang Q (2022) Eliminating interfacial O-involving degradation in Li-rich Mn-based cathodes for all-solid-state lithium batteries. Sci Adv 8(47):eadd5189

    Article  CAS  Google Scholar 

  13. Wu Y, Zhou K, Ren F, Ha Y, Liang Z, Zheng X, Wang Z, Yang W, Zhang M, Luo M, Battaglia C, Yang W, Zhu L, Gong Z, Yang Y (2022) Highly reversible Li2RuO3 cathodes in sulfide-based all solid-state lithium batteries. Energy Environ Sci 15(8):3470–3482

    Article  CAS  Google Scholar 

  14. He X, Wu J, Zhu Z, Liu H, Li N, Zhou D, Zhou X, Zhang H, Bresser D, Fu Y, Crafton MJ, McCloskey BD, Chen Y, An K, Liu P, Jain A, Li J, Yang W, Yang Y, Winter M, Kostecki R (2022) Chemical and structural evolutions of Li-Mn-rich layered electrodes at different current densities. Energy Environ Sci 15(10):4137–4147

    Article  CAS  Google Scholar 

  15. Sun J, Sheng C, Cao X, Wang P, He P, Yang H, Chang Z, Yue X, Zhou H (2022) Restraining oxygen release and suppressing structure distortion in single-crystal Li-rich layered cathode materials. Adv Funct Mater 32(10):2110295

    Article  CAS  Google Scholar 

  16. Wang X, Ding Y-L, Deng Y-P, Chen Z (2020) Ni-rich/Co-poor layered cathode for automotive Li-ion batteries: promises and challenges. Adv Energy Mater 10(12):1903864

    Article  CAS  Google Scholar 

  17. Yin W, Grimaud A, Rousse G, Abakumov AM, Senyshyn A, Zhang L, Trabesinger S, Iadecola A, Foix D, Giaume D, Tarascon JM (2020) Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni01.3Mn0.54Co0.13O2. Nat Commun 11(1):1252–1252

    Article  CAS  Google Scholar 

  18. Zhu Z, Yu D, Yang Y, Su C, Huang Y, Dong Y, Waluyo I, Wang B, Hunt A, Yao X (2019) Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nat Energy 4(12):1049–1058

    Article  CAS  Google Scholar 

  19. Meng J, Xu L, Ma Q, Yang M, Fang Y, Wan G, Li R, Yuan J, Zhang X, Yu H, Liu L, Liu T (2022) Modulating crystal and interfacial properties by W-gradient doping for highly stable and long life Li-rich layered cathodes. Adv Funct Mater 32(19):2113013

    Article  CAS  Google Scholar 

  20. Liu D, Zhang W, Lin H, Li Y, Lu H, Wang Y (2015) Hierarchical porous carbon based on the self-templating structure of rice husk for high-performance supercapacitors. RSC Adv 5(25):19294–19300

    Article  CAS  Google Scholar 

  21. Liu D, Zhang W, Lin H, Li Y, Lu H, Wang Y (2016) A green technology for the preparation of high capacitance rice husk-based activated carbon. J Clean Prod 112:1190–1198

    Article  CAS  Google Scholar 

  22. Shi J, Lin N, Wang Y, Liu D, Lin H (2020) The application of rice husk-based porous carbon in positive electrodes of lead acid batteries. J Energy Storage 30:101392

    Article  Google Scholar 

  23. Wang S, Li Y, Wu J, Zheng B, McDonald MJ, Yang Y (2015) Toward a stabilized lattice framework and surface structure of layered lithium-rich cathode materials with Ti modification. Phys Chem Chem Phys 17(15):10151–10159

    Article  CAS  Google Scholar 

  24. Kishore B, Shanmughasundaram D, Penki TR, Munichandraiah N (2014) Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors. J Appl Electrochem 44(8):903–916

    Article  CAS  Google Scholar 

  25. Luo D, Ding X, Fan J, Zhang Z, Liu P, Yang X, Guo J, Sun S, Lin Z (2020) Accurate control of initial coulombic efficiency for Lithium-rich manganese-based layered oxides by surface multicomponent integration. Angew Chem Int Ed 59(51):23061–23066

    Article  CAS  Google Scholar 

  26. Wei Y, Cheng J, Li D, Li Y, Zeng Z, Liu H, Zhang H, Ji F, Geng X, Lu J, Ci L (2023) A structure self-healing Li-rich cathode achieved by lithium supplement of Li-rich LLZO coating. Adv Funct Mater 33(22):2214775

    Article  CAS  Google Scholar 

  27. Wang J, He X, Paillard E, Laszczynski N, Li J, Passerini S (2016) Lithium-and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv Energy Mater 6(21):1600906

    Article  Google Scholar 

  28. Zhang W, Sun Y, Deng H, Ma J, Zeng Y, Zhu Z, Lv Z, Xia H, Ge X, Cao S, Xiao Y, Xi S, Du Y, Cao A, Chen X (2020) Dielectric polarization in inverse spinel-structured Mg2TiO4 coating to suppress oxygen evolution of li-rich cathode materials. Adv Mater 32(19):2000496

    Article  CAS  Google Scholar 

  29. Wang C-W, Ren F-C, Zhou Y, Yan P-F, Zhou X-D, Zhang S-J, Liu W, Zhang W-D, Zou M-H, Zeng L-Y, Yao X-Y, Huang L, Li J-T, Sun S-G (2021) Engineering the interface between LiCoO2 and Li10GeP2S12 solid electrolytes with an ultrathin Li2CoTi3O8 interlayer to boost the performance of all-solid-state batteries. Energy Environ Sci 14(1):437–450

    Article  CAS  Google Scholar 

  30. Xie J, Imanishi N, Hirano A, Takeda Y, Yamamoto O, Zhao XB, Cao GS (2010) Li-ion diffusion behavior in Sn, SnO and SnO2 thin films studied by galvanostatic intermittent titration technique. Solid State Ionics 181(35):1611–1615

    Article  CAS  Google Scholar 

  31. Cao S, Chen J, Li H, Li Z, Guo C, Chen G, Guo X, Wang X (2023) Constructing high performance Li-rich Mn-based cathode via surface phase structure controlling and ion doping. J Power Sources 555:232398

    Article  CAS  Google Scholar 

  32. Qu X, Huang H, Wan T, Hu L, Yu Z, Liu Y, Dou A, Zhou Y, Su M, Peng X, Wu H-H, Wu T, Chu D (2022) An integrated surface coating strategy to enhance the electrochemical performance of nickel-rich layered cathodes. Nano Energy 91:106665

    Article  CAS  Google Scholar 

  33. Yang G, Pan K, Lai F, Wang Z, Chu Y, Yang S, Han J, Wang H, Zhang X, Li Q (2021) Integrated co-modification of PO43 polyanion doping and Li2TiO3 coating for Ni-rich layered LiNi0.6Co0.2Mn0.2O2 cathode material of Lithium-Ion batteries. Chem Eng J 421:129964

    Article  CAS  Google Scholar 

  34. Zhang W, Sun X, Tang Y, Xia H, Zeng Y, Qiao L, Zhu Z, Lv Z, Zhang Y, Ge X, Xi S, Wang Z, Du Y, Chen X (2019) Lowering charge transfer barrier of LiMn2O4 via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures. J Am Chem Soc 141(36):14038–14042

    Article  CAS  Google Scholar 

  35. Zhang XD, Shi JL, Liang JY, Yin YX, Zhang JN, Yu XQ, Guo YG (2018) Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating. Adv Mater 30(29):1801751

    Article  Google Scholar 

  36. Shimoda K, Oishi M, Matsunaga T, Murakami M, Yamanaka K, Arai H, Ukyo Y, Uchimoto Y, Ohta T, Matsubara E, Ogumi Z (2017) Direct observation of layered-to-spinel phase transformation in Li2MnO3 and the spinel structure stabilised after the activation process. J Mater Chem A 5(14):6695–6707

    Article  CAS  Google Scholar 

  37. Yu F-D, Que L-F, Wang Z-B, Zhang Y, Xue Y, Liu B-S, Gu D-M (2016) Layered-spinel capped nanotube assembled 3D Li-rich hierarchitectures for high performance Li-ion battery cathodes. J Mater Chem A 4(47):18416–18425

    Article  CAS  Google Scholar 

  38. Zhang XH, Cao S, Yu RZ, Li C, Huang Y, Wang Y, Wang XY, Chen GR (2019) Improving electrochemical performances of Li-rich layered Mn-based oxide cathodes through K2Cr2O7 solution treatment. ACS Appl Energy Mater 2(2):1563–1571

    Article  CAS  Google Scholar 

  39. Yu DYW, Yanagida K (2011) Structural analysis of Li2MnO3 and related Li-Mn-O materials. J Electrochem Soc 158(9):A1015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Zhuhai Natural Science Foundation (Grant No. ZH22017003210080PWC), Zhuhai College of Science and Technology Three Levels Talent Construction Project, and College Students’ Innovation and Entrepreneurship Training Program (202213684036).

Author information

Authors and Affiliations

Authors

Contributions

JW contributed to writing–original draft, and data curation, ZC contributed to methodology, JC, QW and WG designed the study and collected the data, XW and CT analyzed the data. All authors were involved in writing and editing the manuscript.

Corresponding author

Correspondence to Jue Wu.

Ethics declarations

Conflict of interest

The author declares that there is no relevant competitive economic interest or personal relationship between them that will hinder the work of this article.

Additional information

Handling Editor: Jean-Francois Gohy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 593 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Chen, Z., Cheng, J. et al. Accelerating Li+ intercalation kinetics through synergetic modification in Li-rich cathode. J Mater Sci 58, 16785–16796 (2023). https://doi.org/10.1007/s10853-023-09065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09065-3

Navigation