Skip to main content
Log in

A review of humidity-driven actuator: toward high response speed and practical applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the past two decades, humidity actuators have received extensive attention from researchers due to their merits of simple stimulation, no pollution, programmable actuation behaviour, and simple structure. However, in order to perform more complex and difficult tasks, it is indispensable to enhance the response speed of the humidity actuators. Therefore, we mainly discuss the influence of materials and structure on the response speed of the actuators in this paper. In this review, the materials of the actuators include inorganic materials, polymers, biomaterials, hybrid materials, and structural materials. According to the structures, the actuators can be divided into monolayer film and multilayer film types. In addition, the applications of humidity-driven actuators in humidity detection, soft robot, self-power and medical equipment are introduced, providing a reference for the large-scale application of humidity actuators. Finally, this review also considers the practical challenges faced by humidity-driven actuators, summarizes how these challenges affect the potential applications of the actuators, and prospects for the future development trend of the actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Copyright 2021, American Chemical Society. b SEM images of GO and RGO. Reproduced with permission [30]. Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. c GO reduction by laser. The lowest layer is a glass plate, on which GO is coated, and GO is reduced to RGO under laser irradiation. Reproduced with permission [31]. Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. d The SEM image of AgNWs/NFs/GO membrane. Reproduced with permission [32]. Copyright 2020, American Chemical Society. e The GO/RGO-x (x = 1–4 h) actuators with different reduction degrees. Reproduced with permission [33]. Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. f1-3 Fabricated MXene and internal structure. Reproduced with permission [34]. Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. g The MXene film bends under the proximity of the fingers. Reproduced with permission [35]. Copyright 2021, American Chemical Society

Figure 2

Copyright 2013, American Chemical Society. b Picture of fiber actuators made of different materials. Reproduced with permission [66]. Copyright 2018, American Chemical Society. c1 White original fiber cloth and c2 black fiber coated by MXene impregnation. Reproduced with permission [67]. Copyright 2020, American Chemical Society. d Schematic diagram of hydrogel and its internal cross-linking. Reproduced with permission [68]. Copyright 2018, American Chemical Society

Figure 3

Copyright 2021, American Chemical Society. c Schematic diagram of the fabrication of spore actuator. Reproduced with permission [100]. Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. d Schematic diagram of liquid crystal actuator treated with acid. Reproduced with permission [101]. Copyright 21 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. e A prepared AG actuator. Reproduced with permission [102]. Copyright 2015 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 4

Copyright 2021 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. b SEM image of the CNF/GO/CNT composite films. Reproduced with permission [123]. Copyright 2021, American Chemical Society. c1,2 SEM images of CNF-MXene-TA actuator. Reproduced with permission [124]. Copyright 2021, American Chemical Society. d1,2 SEM image of the PW-MXene film. Reproduced with permission [125]. Copyright 2021, American Chemical Society

Figure 5

Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. b1 Picture of a film with different roughness on the upper and lower surfaces, b2 it bends at ambient humidity

Figure 6

Copyright 2019, American Chemical Society

Figure 7

Copyright 2018, American Chemical Society. b1-3 Schematic diagram of color change of BPLC actuator stimulated by humidity under acid and alkali conditions. Reproduced with permission [106]. Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. c1,2 PVA/PDMS film can clearly display the back picture under humidity stimulation. Reproduced with permission [159]. Copyright 2019, American Chemical Society. d1-3 Schematic diagram of actuator unresponsive to humidity after SO2 treatment. Reproduced with permission [108]. Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 8

Copyright 2021 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. b Pictures of the purpose of the delivery of goods by the executing agency. Reproduced with permission [52]. Copyright 2021 Wiley‐VH Verlag GmbH & Co. KGaA, Weinheim. c Schematic diagram of an intelligent rain curtain. Reproduced with permission [31]. Copyright 2020 Wiley‐VH Verlag GmbH & Co. KGaA, Weinheim. d Photographs of goldfish driven by humidity based on PVA. Reproduced with permission [163]. Copyright 2020 Wiley‐VH Verlag GmbH & Co. KGaA, Weinheim

Figure 9

Copyright 2015 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. b Schematic diagram of voltage generated by GQDs-EG by MEET method. (i) is a schematic diagram of the distribution of oxygen-containing groups in the actuator. (ii) When the ambient humidity rises, the oxygen-containing groups of the actuator film release hydrogen ions. (iii) under the diffusion of hydrogen ions, the actuator generates current and voltage. (iv) when the ambient humidity drops, the hydrogen ions return to their original positions. Reproduced with permission [176]. Copyright 2018, American Chemical Society. c Picture of intelligent fabric. The resistance of clothes increases with the increase of environmental humidity. After the circuit is connected, it can be used to detect the sweating of human body. Reproduced with permission [74]. Copyright 2019 Wiley‐VH Verlag GmbH & Co. KGaA, Weinheim. d and e Schematic diagrams and Image of respiratory masks. Reproduced with permission [182]. Copyright 2020, American Chemical Society

Similar content being viewed by others

References

  1. Joyee EB, Pan Y (2019) A fully three-dimensional printed inchworm-inspired soft robot with magnetic actuation. Soft Rob 6:333–345. https://doi.org/10.1089/soro.2018.0082

    Article  Google Scholar 

  2. Shepherd RF, Ilievski F, Choi W et al (2011) Multigait soft robot. Proc Natl Acad Sci USA 108:20400–20403. https://doi.org/10.1073/pnas.1116564108

    Article  Google Scholar 

  3. Jin H, Dong EB, Xu M, Liu CS, Alici G, Jie Y (2016) Soft and smart modular structures actuated by shape memory alloy (sma) wires as tentacles of soft robots. Smart Mater Struct 25:085026. https://doi.org/10.1088/0964-1726/25/8/085026

    Article  Google Scholar 

  4. Han Z, Wang P, Mao G et al (2020) Dual ph-responsive hydrogel actuator for lipophilic drug delivery. ACS Appl Mater Interfaces 12:12010–12017. https://doi.org/10.1021/acsami.9b21713

    Article  CAS  Google Scholar 

  5. Ahn C, Liang Xd, Cai SQ (2019) Bioinspired design of light-powered crawling, squeezing, and jumping untethered soft robot. Adv Mater Technol 4:1900185. https://doi.org/10.1002/admt.201900185

    Article  CAS  Google Scholar 

  6. Rogóż M, Zeng H, Xuan C, Wiersma DS, Wasylczyk P (2016) Light-driven soft robot mimics caterpillar locomotion in natural scale. Adv Opt Mater 4:1689–1694. https://doi.org/10.1002/adom.201600503

    Article  CAS  Google Scholar 

  7. Chin LT (2019) A high-deformation electric soft robotic gripper via handed shearing auxetic. Doc Dissertation, Massachusetts Institute of Technology

  8. Ji ZY, Yan CY, Yu B, Wang XL, Zhou F (2017) Multimaterials 3d printing for free assembly manufacturing of magnetic driving soft actuator. Adv Mater Interfaces 4:1700629. https://doi.org/10.1002/admi.201700629

    Article  CAS  Google Scholar 

  9. Mu J, Hou C, Zhu B, Wang H, Li Y, Zhang Q (2015) A multi-responsive water-driven actuator with instant and powerful performance for versatile applications. Sci Rep 5:9503. https://doi.org/10.1038/srep09503

    Article  CAS  Google Scholar 

  10. Yang B, Bi WT, Zhong CA, Huang MC, Ni Y, He LH, Wu CZ (2018) Moisture-triggered actuator and detector with high-performance: interface engineering of graphene oxide/ethyl cellulose. Sci China Mater 61:1291–1296. https://doi.org/10.1007/s40843-018-9249-y

    Article  CAS  Google Scholar 

  11. Héraly F, Zhang M, Åhl A, Cao W, Bergström L, Yuan JY (2021) Nanodancing with moisture: Humidity-sensitive bilayer actuator derived from cellulose nanofibrils and reduced graphene oxide. Adv Intell Syst 4:2100084. https://doi.org/10.1002/aisy.202100084

    Article  Google Scholar 

  12. Ji X, Ying Y, Ge C et al (2019) Asymmetrically synchronous reduction and assembly of graphene oxide film on metal foil for moisture responsive actuator. Nanotechnology 30:445601. https://doi.org/10.1088/1361-6528/ab359e

    Article  CAS  Google Scholar 

  13. Wang G, Xia H, Sun XC et al (2018) Actuator and generator based on moisture-responsive pedot: Pss/pvdf composite film. Sens Actuators B 255:1415–1421. https://doi.org/10.1016/j.snb.2017.08.125

    Article  CAS  Google Scholar 

  14. Le Duigou A, Castro M (2015) Moisture-induced self-shaping flax-reinforced polypropylene biocomposite actuator. Ind Crops Prod 71:1–6. https://doi.org/10.1016/j.indcrop.2015.03.077

    Article  CAS  Google Scholar 

  15. Xu G, Zhang M, Zhou Q, Chen H, Gao T, Li C, Shi G (2017) A small graphene oxide sheet/polyvinylidene fluoride bilayer actuator with large and rapid responses to multiple stimuli. Nanoscale 9:17465–17470. https://doi.org/10.1039/c7nr07116g

    Article  CAS  Google Scholar 

  16. Kim SH, Kwon CH, Park K et al (2016) Bio-inspired, moisture-powered hybrid carbon nanotube yarn muscles. Sci Rep 6:23016. https://doi.org/10.1038/srep23016

    Article  CAS  Google Scholar 

  17. Wang W, Wang S, Xiang C, Liu S, Li M, Wang D (2021) Graphene oxide/nanofiber-based actuation films with moisture and photothermal stimulation response for remote intelligent control applications. ACS Appl Mater Interfaces 13:48179–48188. https://doi.org/10.1021/acsami.1c11117

    Article  CAS  Google Scholar 

  18. Yang YY, Zhang M, Li DF, Shen YJ (2019) Graphene-based light-driven soft robot with snake-inspired concertina and serpentine locomotion. Adv Mater Technol 4:1800366. https://doi.org/10.1002/admt.201800366

    Article  CAS  Google Scholar 

  19. Fundueanu G, Constantin M, Bucatariu S, Ascenzi P (2017) Ph/thermo-responsive poly(n-isopropylacrylamide-co-maleic acid) hydrogel with a sensor and an actuator for biomedical applications. Polymer 110:177–186. https://doi.org/10.1016/j.polymer.2017.01.003

    Article  CAS  Google Scholar 

  20. Ijaz S, Li H, Hoang MC, Kim CS, Bang D, Choi E, Park JO (2020) Magnetically actuated miniature walking soft robot based on chained magnetic microparticles-embedded elastomer. Sens Actuators A 301:111707. https://doi.org/10.1016/j.sna.2019.111707

    Article  CAS  Google Scholar 

  21. Jiang H, Fan L, Yan S, Li F, Li H, Tang J (2019) Tough and electro-responsive hydrogel actuators with bidirectional bending behavior. Nanoscale 11:2231–2237. https://doi.org/10.1039/c8nr07863g

    Article  CAS  Google Scholar 

  22. Kim JW, Kim JW, Kim HC, Zhai LD, Ko HU, Muthoka RM (2019) Review of soft actuator materials. Int J Precis Eng Manuf 20:2221–2241. https://doi.org/10.1007/s12541-019-00255-1

    Article  Google Scholar 

  23. Shen CH, Springer GS (1976) Moisture absorption and desorption of composite materials. J Compos Mater 10:2–20. https://doi.org/10.1177/002199837601000101

    Article  Google Scholar 

  24. Geim AK, Novoselov KS (2010) The rise of graphene. Nat Mater 6:11–19. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  25. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200. https://doi.org/10.1038/nature11458

    Article  CAS  Google Scholar 

  26. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. https://doi.org/10.1039/b917103g

    Article  CAS  Google Scholar 

  27. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 6:711–723. https://doi.org/10.1002/smll.200901934

    Article  CAS  Google Scholar 

  28. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  29. Rawal A, Che Man SH, Agarwal V, Yao Y, Thickett SC, Zetterlund PB (2021) Structural complexity of graphene oxide: the kirigami model. ACS Appl Mater Interfaces 13:18255–18263. https://doi.org/10.1021/acsami.1c01157

    Article  CAS  Google Scholar 

  30. Jiang HB, Liu Y, Liu J, Li SY, Song YY, Han DD, Ren LQ (2019) Moisture-responsive graphene actuators prepared by two-beam laser interference of graphene oxide paper. Front Chem 7:464. https://doi.org/10.3389/fchem.2019.00464

    Article  CAS  Google Scholar 

  31. Ma JN, Mao JW, Han DD, Fu XY, Wang YX, Zhang YL (2019) Laser programmable patterning of rgo/go janus paper for multiresponsive actuators. Adv Mater Technol 4:1900554. https://doi.org/10.1002/admt.201900554

    Article  CAS  Google Scholar 

  32. Xiang C, Wang W, Zhu Q, Xue D, Zhao X, Li M, Wang D (2020) Flexible and super-sensitive moisture-responsive actuators by dispersing graphene oxide into three-dimensional structures of nanofibers and silver nanowires. ACS Appl Mater Interfaces 12:3245–3253. https://doi.org/10.1021/acsami.9b20365

    Article  CAS  Google Scholar 

  33. Han DD, Liu YQ, Ma JN, Mao JW, Chen ZD, Zhang YL, Sun HB (2018) Biomimetic graphene actuators enabled by multiresponse graphene oxide paper with pretailored reduction gradient. Adv Funct Mater 3:1800258. https://doi.org/10.1002/admt.201800258

    Article  CAS  Google Scholar 

  34. Wang J, Liu Y, Cheng Z et al (2020) Highly conductive mxene film actuator based on moisture gradients. Angew Chem Int Edit 59:14029–14033. https://doi.org/10.1002/anie.202003737

    Article  CAS  Google Scholar 

  35. Xu T, Pei D, Yu S, Zhang X, Yi M, Li C (2021) Design of mxene composites with biomimetic rapid and self-oscillating actuation under ambient circumstances. ACS Appl Mater Interfaces 13:31978–31985. https://doi.org/10.1021/acsami.1c06343

    Article  CAS  Google Scholar 

  36. Qiu Y, Wang M, Zhang W, Liu Y, Li YV, Pan K (2018) An asymmetric graphene oxide film for developing moisture actuators. Nanoscale 10:14060–14066. https://doi.org/10.1039/c8nr01785a

    Article  CAS  Google Scholar 

  37. Yang KH, Tang ZD, Ye YJ et al (2021) Dual-responsive and bidirectional bending actuators based on a graphene oxide composite for bionic soft robotics. J Appl Polym Sci 139:52014. https://doi.org/10.1002/app.52014

    Article  CAS  Google Scholar 

  38. Cheng H, Liu J, Zhao Y et al (2013) Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew Chem Int Ed 52:10482–10486. https://doi.org/10.1002/anie.201304358

    Article  CAS  Google Scholar 

  39. Jiang Y, Hu C, Cheng H et al (2016) Spontaneous, straightforward fabrication of partially reduced graphene oxide-polypyrrole composite films for versatile actuators. ACS Nano 10:4735–4741. https://doi.org/10.1021/acsnano.6b01233

    Article  CAS  Google Scholar 

  40. Xu G, Chen J, Zhang M, Shi G (2017) An ultrasensitive moisture driven actuator based on small flakes of graphene oxide. Sens Actuators B 242:418–422. https://doi.org/10.1016/j.snb.2016.11.068

    Article  CAS  Google Scholar 

  41. Wang W, Xiang C, Zhu Q, Zhong W, Li M, Yan K, Wang D (2018) Multistimulus responsive actuator with go and carbon nanotube/pdms bilayer structure for flexible and smart devices. ACS Appl Mater Interfaces 10:27215–27223. https://doi.org/10.1021/acsami.8b08554

    Article  CAS  Google Scholar 

  42. Xu GC, Chen J, Zhang M, Shi GQ (2017) An ultrasensitive moisture driven actuator based on small flakes of graphene oxide. Sens Actuators B 242:418–422. https://doi.org/10.1016/j.snb.2016.11.068

    Article  CAS  Google Scholar 

  43. Han DD, Zhang YL, Jiang HB et al (2015) Moisture-responsive graphene paper prepared by self-controlled photoreduction. Adv Mater 27:332–338. https://doi.org/10.1002/adma.201403587

    Article  CAS  Google Scholar 

  44. Wang W, Zhang YL, Han B et al (2019) A complementary strategy for producing moisture and alkane dual-responsive actuators based on graphene oxide and pdms bimorph. Sens Actuators B 290:133–139. https://doi.org/10.1016/j.snb.2019.03.117

    Article  CAS  Google Scholar 

  45. Aksu Z, Şahin CH, Alanyalıoğlu M (2022) Fabrication of janus go/rgo humidity actuator by one-step electrochemical reduction route. Sens Actuators B 354:131198. https://doi.org/10.1016/j.snb.2021.131198

    Article  CAS  Google Scholar 

  46. Pei SF, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  47. Jeong HK, Lee YP, Lahaye RJ, Park MH, An KH, Kim IJ, Lee YH (2008) Evidence of graphitic ab stacking order of graphite oxides. J Am Chem Soc 130:1362–1366. https://doi.org/10.1021/ja076473o

    Article  CAS  Google Scholar 

  48. Mattevi C, Eda G, Agnoli S et al (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19:2577–2583. https://doi.org/10.1002/adfm.200900166

    Article  CAS  Google Scholar 

  49. Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408. https://doi.org/10.1038/nchem.281

    Article  CAS  Google Scholar 

  50. Wang J, Ma H, Liu Y, Xie Z, Fan Z (2021) Mxene-based humidity-responsive actuators: Preparation and properties. ChemPlusChem 86:406–417. https://doi.org/10.1002/cplu.202000828

    Article  CAS  Google Scholar 

  51. Nguyen VH, Tabassian R, Oh S et al (2020) Stimuli-responsive mxene-based actuators. Adv Funct Mater. https://doi.org/10.1002/adfm.201909504

    Article  Google Scholar 

  52. Yang LY, Cui J, Zhang L, Xu XR, Chen X, Sun DP (2021) A moisture-driven actuator based on polydopamine-modified mxene/bacterial cellulose nanofiber composite film. Adv Funct Mater 31:2101378. https://doi.org/10.1002/adfm.202101378

    Article  CAS  Google Scholar 

  53. Jia G, Zheng A, Wang X et al (2021) Flexible, biocompatible and highly conductive mxene-graphene oxide film for smart actuator and humidity sensor. Sens Actuators B 346:130507. https://doi.org/10.1016/j.snb.2021.130507

    Article  CAS  Google Scholar 

  54. Olatunji O (2016) Classification of polymers. In: Olatunji O (ed) Natural polymers: industrial techniques andapplication. Springer, Switzerland, pp 1–17

    Chapter  Google Scholar 

  55. Stejskal J, Trchová M (2018) Conducting polypyrrole nanotubes: a review. Chem Pap 72:1563–1595. https://doi.org/10.1007/s11696-018-0394-x

    Article  CAS  Google Scholar 

  56. Cucchi I, Boschi A, Arosio C, Bertini F, Freddi G, Catellani M (2009) Bio-based conductive composites: preparation and properties of polypyrrole (ppy)-coated silk fabrics. Synth Met 159:246–253. https://doi.org/10.1016/j.synthmet.2008.09.012

    Article  CAS  Google Scholar 

  57. Lin M, Cho M, Choe WS, Yoo JB, Lee Y (2010) Polypyrrole nanowire modified with gly-gly-his tripeptide for electrochemical detection of copper ion. Biosens Bioelectron 26:940–945. https://doi.org/10.1016/j.bios.2010.06.030

    Article  CAS  Google Scholar 

  58. Huang Y, Li HF, Wang ZF et al (2016) Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438. https://doi.org/10.1016/j.nanoen.2016.02.047

    Article  CAS  Google Scholar 

  59. Wang JG, Zhang C, Du ZJ, Li HQ, Zou W (2016) Functionalization of mwcnts with silver nanoparticles decorated polypyrrole and their application in antistatic and thermal conductive epoxy matrix nanocomposite. RSC Adv 6:31782–31789. https://doi.org/10.1039/c6ra01248e

    Article  CAS  Google Scholar 

  60. Jia YC, Xiao P, He HC, Yao JY, Liu FL, Wang ZF, Li YH (2012) Photoelectrochemical properties of polypyrrole/tio2 nanotube arrays nanocomposite under visible light. Appl Surf Sci 258:6627–6631. https://doi.org/10.1016/j.apsusc.2012.03.092

    Article  CAS  Google Scholar 

  61. Wang J, Chen J, Konstantinov K et al (2006) Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochim Acta 51:4634–4638. https://doi.org/10.1016/j.electacta.2005.12.046

    Article  CAS  Google Scholar 

  62. Håkansson E, Amiet A, Kaynak A (2006) Electromagnetic shielding properties of polypyrrole/polyester composites in the 1–18ghz frequency range. Synth Met 156:917–925. https://doi.org/10.1016/j.synthmet.2006.05.010

    Article  CAS  Google Scholar 

  63. Hacarlioglu P (2003) Polycarbonate–polypyrrole mixed matrix gas separation membranes. J Membrane Sci 225:51–62. https://doi.org/10.1016/s0376-7388(03)00342-9

    Article  CAS  Google Scholar 

  64. Okuzaki H, Kuwabara T, Funasaka K, Saido T (2013) Humidity-sensitive polypyrrole films for electro-active polymer actuators. Adv Funct Mater 23:4400–4407. https://doi.org/10.1002/adfm.201203883

    Article  CAS  Google Scholar 

  65. Ma M, Guo L, Anderson DG, Langer R (2013) Bio-inspired polymer composite actuator and generator driven by water gradients. Sci Rep 339:186–189. https://doi.org/10.1126/science.1230262

    Article  CAS  Google Scholar 

  66. Yang XH, Wang WH, Miao MH (2018) Moisture-responsive natural fiber coil-structured artificial muscles. ACS Appl Mater Interfaces 10:32256–32264. https://doi.org/10.1021/acsami.8b12144

    Article  CAS  Google Scholar 

  67. Zhao X, Wang LY, Tang CY et al (2020) Smart ti3c2tx mxene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano 14:8793–8805. https://doi.org/10.1021/acsnano.0c03391

    Article  CAS  Google Scholar 

  68. Tan Y, Wang D, Xu H et al (2018) Rapid recovery hydrogel actuators in air with bionic large-ranged gradient structure. ACS Appl Mater Interfaces 10:40125–40131. https://doi.org/10.1021/acsami.8b13235

    Article  CAS  Google Scholar 

  69. Kongahage D, Foroughi J (2019) Actuator materials: review on recent advances and future outlook for smart textiles. Fibers 7:7030021. https://doi.org/10.3390/fib7030021

    Article  CAS  Google Scholar 

  70. Qin J, Feng P, Wang Y, Du X, Song B (2020) Nanofibrous actuator with an alignment gradient for millisecond-responsive, multidirectional, multimodal, and multidimensional large deformation. ACS Appl Mater Interfaces 12:46719–46732. https://doi.org/10.1021/acsami.0c13594

    Article  CAS  Google Scholar 

  71. Stoychev GV, Ionov L (2016) Actuating fibers: design and applications. ACS Appl Mater Interfaces 8:24281–24294. https://doi.org/10.1021/acsami.6b07374

    Article  CAS  Google Scholar 

  72. Wang W, Xiang CX, Liu QZ, Li MF, Zhong WB, Yan KL, Wang D (2018) Natural alginate fiber-based actuator driven by water or moisture for energy harvesting and smart controller applications. J Mater Chem A 6:22599–22608. https://doi.org/10.1039/c8ta08064j

    Article  CAS  Google Scholar 

  73. He S, Chen P, Qiu L, Wang B, Sun X, Xu Y, Peng H (2015) A mechanically actuating carbon-nanotube fiber in response to water and moisture. Angew Chem Int Edit 54:14880–14884. https://doi.org/10.1002/anie.201507108

    Article  CAS  Google Scholar 

  74. Liu LX, Chen W, Zhang HB, Wang QW, Guan FL, Yu ZZ (2019) Flexible and multifunctional silk textiles with biomimetic leaf-like mxene silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv Funct Mater 29:1905197. https://doi.org/10.1002/adfm.201905197

    Article  CAS  Google Scholar 

  75. Ganji F, Vasheghani FS, Vasheghani FE (2010) Theoretical description of hydrogel swelling: A review. Iran Polym J 19:375–398. https://doi.org/10.1007/s12303-009-0004-6

    Article  CAS  Google Scholar 

  76. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications—a review. J Adv Res 6:105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  Google Scholar 

  77. Pandiyarajan CK, Prucker O, Ruhe J (2016) Humidity driven swelling of the surface-attached poly(n-alkylacrylamide) hydrogels. Macromolecules 49:8254–8264. https://doi.org/10.1021/acs.macromol.6b01379

    Article  CAS  Google Scholar 

  78. Lv C, Xia H, Shi Q et al (2017) Sensitively humidity-driven actuator based on photopolymerizable peg-da films. Adv Mater Interfaces. https://doi.org/10.1002/admi.201601002

    Article  Google Scholar 

  79. Morales D, Palleau E, Dickey MD, Velev OD (2014) Electro-actuated hydrogel walkers with dual responsive legs. Soft Matter 10:1337–1348. https://doi.org/10.1039/c3sm51921j

    Article  CAS  Google Scholar 

  80. Reyssat E, Mahadevan L (2009) Hygromorphs: from pine cones to biomimetic bilayers. J R Soc Interface 6:951–957. https://doi.org/10.1098/rsif.2009.0184

    Article  CAS  Google Scholar 

  81. Dawson C, Julian FVV, Anne-Marie R (1997) How pine cones open. Nature 390:668. https://doi.org/10.1038/37745

    Article  CAS  Google Scholar 

  82. Elbaum R, Gorb S, Fratzl P (2008) Structures in the cell wall that enable hygroscopic movement of wheat awns. J Struct Biol 164:101–107. https://doi.org/10.1016/j.jsb.2008.06.008

    Article  CAS  Google Scholar 

  83. Song K, Yeom E, Seo SJ, Kim K, Kim H, Lim JH, Joon Lee S (2015) Journey of water in pine cones. Sci Rep 5:9963. https://doi.org/10.1038/srep09963

    Article  CAS  Google Scholar 

  84. Trifol J, Moriana R (2022) Barrier packaging solutions from residual biomass: Synergetic properties of cnf and lcnf in films. Ind Crops Prod 177:114493. https://doi.org/10.1016/j.indcrop.2021.114493

    Article  CAS  Google Scholar 

  85. Trifol J, Marin Quintero DC, Moriana R (2021) Pine cone biorefinery: Integral valorization of residual biomass into lignocellulose nanofibrils (lcnf)-reinforced composites for packaging. ACS Sustain Chem Eng 9:2180–2190. https://doi.org/10.1021/acssuschemeng.0c07687

    Article  CAS  Google Scholar 

  86. Liu D, Tarakanova A, Hsu CC et al (2019) Spider dragline silk as torsional actuator driven by humidity. Sci Adv 5:1–8. https://doi.org/10.1126/sciadv.aau9183

    Article  CAS  Google Scholar 

  87. Bram A, Branden CI, Craig C, Snigireva I, Riekel C (1977) X-ray diffraction from single fibres of spider silk. J Appl Crystallogr 30:390–392

    Article  Google Scholar 

  88. Boutry C, Blackledge TA (2010) Evolution of supercontraction in spider silk: Structure-function relationship from tarantulas to orb-weavers. J Exp Biol 213:3505–3514. https://doi.org/10.1242/jeb.046110

    Article  Google Scholar 

  89. Tokareva O, Michalczechen-Lacerda VA, Rech EL, Kaplan DL (2013) Recombinant DNA production of spider silk proteins. Microb Biotechnol 6:651–663. https://doi.org/10.1111/1751-7915.12081

    Article  CAS  Google Scholar 

  90. Hakimi O, Knight DP, Vollrath F, Vadgama P (2007) Spider and mulberry silkworm silks as compatible biomaterials. Compos B 38:324–337. https://doi.org/10.1016/j.compositesb.2006.06.012

    Article  CAS  Google Scholar 

  91. Gomes CM, Liu C, Paten JA, Felton SM, Deravi LF (2018) Protein-based hydrogels that actuate self-folding systems. Adv Funct Mater 29:1805777. https://doi.org/10.1002/adfm.201805777

    Article  CAS  Google Scholar 

  92. Carter NA, Grove TZ (2018) Protein self-assemblies that can generate, hold, and discharge electric potential in response to changes in relative humidity. J Am Chem Soc 140:7144–7151. https://doi.org/10.1021/jacs.8b02663

    Article  CAS  Google Scholar 

  93. Main ER, Phillips JJ, Millership C (2013) Repeat protein engineering: Creating functional nanostructures/biomaterials from modular building blocks. Biochem Soc Trans 41:1152–1158. https://doi.org/10.1042/BST20130102

    Article  CAS  Google Scholar 

  94. Carter NA, Grove TZ (2015) Repeat-proteins films exhibit hierarchical anisotropic mechanical properties. Biomacromol 16:706–714. https://doi.org/10.1021/bm501578j

    Article  CAS  Google Scholar 

  95. Grove TZ, Regan L, Cortajarena AL (2013) Nanostructured functional films from engineered repeat proteins. J R Soc Interface 10:20130051. https://doi.org/10.1098/rsif.2013.0051

    Article  Google Scholar 

  96. Zhao Z, Hwang Y, Yang Y, Fan T, Song J, Suresh S, Cho NJ (2020) Actuation and locomotion driven by moisture in paper made with natural pollen. P Natl Acad Sci USA 117:8711–8718. https://doi.org/10.1073/pnas.1922560117

    Article  CAS  Google Scholar 

  97. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572. https://doi.org/10.1128/MMBR.64.3.548-572.2000

    Article  CAS  Google Scholar 

  98. Chen X, Mahadevan L, Driks A, Sahin O (2014) Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nat Nanotechnol 9:137–141. https://doi.org/10.1038/nnano.2013.290

    Article  CAS  Google Scholar 

  99. Park Y, Chen X (2020) Water-responsive materials for sustainable energy applications. J Mater Chem A 8:15227–15244. https://doi.org/10.1039/d0ta02896g

    Article  CAS  Google Scholar 

  100. Cakmak O, El Tinay HO, Chen X, Sahin O (2019) Spore-based water-resistant water-responsive actuators with high power density. Adv Mater Technol 4:1800596. https://doi.org/10.1002/admt.201800596

    Article  Google Scholar 

  101. Kim K, Guo Y, Bae J et al (2021) 4d printing of hygroscopic liquid crystal elastomer actuators. Small 17:2100910. https://doi.org/10.1002/smll.202100910

    Article  CAS  Google Scholar 

  102. Zhang L, Naumov P (2015) Light- and humidity-induced motion of an acidochromic film. Angew Chem Int Edit 54:8642–8647. https://doi.org/10.1002/anie.201504153

    Article  CAS  Google Scholar 

  103. Halper SR, Villahermosa RM (2009) Cobalt-containing polyimides for moisture sensing and absorption. ACS Appl Mater Interfaces 1:1041–1044. https://doi.org/10.1021/am9000198

    Article  CAS  Google Scholar 

  104. de Haan LT, Verjans JM, Broer DJ, Bastiaansen CW, Schenning AP (2014) Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl. J Am Chem Soc 136:10585–10588. https://doi.org/10.1021/ja505475x

    Article  CAS  Google Scholar 

  105. Dai M, Picot OT, Verjans JM, de Haan LT, Schenning AP, Peijs T, Bastiaansen CW (2013) Humidity-responsive bilayer actuators based on a liquid-crystalline polymer network. ACS Appl Mater Interfaces 5:4945–4950. https://doi.org/10.1021/am400681z

    Article  CAS  Google Scholar 

  106. Hu W, Sun J, Wang Q et al (2020) Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals. Adv Funct Mater 30:2004610. https://doi.org/10.1002/adfm.202004610

    Article  CAS  Google Scholar 

  107. Wani OM, Verpaalen R, Zeng H, Priimagi A, Schenning A (2019) An artificial nocturnal flower via humidity-gated photoactuation in liquid crystal networks. Adv Mater 31:1805985. https://doi.org/10.1002/adma.201805985

    Article  CAS  Google Scholar 

  108. Lan RC, Sun J, Shen C, Huang R, Zhang LY, Yang H (2019) Reversibly and irreversibly humidity-responsive motion of liquid crystalline network gated by so2 gas. Adv Funct Mater 29:1900013. https://doi.org/10.1002/adfm.201900013

    Article  CAS  Google Scholar 

  109. Zhang Y, Zhou SF, Zhang LD, Yan QW, Mao L, Wu YQ, Huang W (2020) Pre-stretched double network polymer films based on agarose and polyacrylamide with sensitive humidity-responsive deformation, shape memory, and self-healing properties. Macromol Chem Phys 221:1900518. https://doi.org/10.1002/macp.201900518

    Article  CAS  Google Scholar 

  110. Zhao Q, Dunlop JW, Qiu X et al (2014) An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nat Commun 5:4293. https://doi.org/10.1038/ncomms5293

    Article  CAS  Google Scholar 

  111. Wang YR, Feng PP, Liu R, Song BT (2021) Rational design of a porous nanofibrous actuator with highly sensitive, ultrafast, and large deformation driven by humidity. Sens Actuators B 330:129236. https://doi.org/10.1016/j.snb.2020.129236

    Article  CAS  Google Scholar 

  112. Deng H, Zhang C, Su JW, Xie Y, Zhang C, Lin J (2018) Bioinspired multi-responsive soft actuators controlled by laser tailored graphene structures. J Mater Chem B 6:5415–5423. https://doi.org/10.1039/c8tb01285g

    Article  CAS  Google Scholar 

  113. Lin J, Peng Z, Liu Y et al (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5:5714. https://doi.org/10.1038/ncomms6714

    Article  CAS  Google Scholar 

  114. Lv Y, Li Q, Shi J et al (2022) Graphene-based moisture actuator with oriented microstructures prepared by one-step laser reduction for accurately controllable responsive direction and position. ACS Appl Mater Interfaces 14:12434–12441. https://doi.org/10.1021/acsami.2c00873

    Article  CAS  Google Scholar 

  115. Zheng YF, Huang H, Wang Y, Zhu J, Yu JR, Hu ZM (2021) Poly (vinyl alcohol) based gradient cross-linked and reprogrammable humidity-responsive actuators. Sens Actuators B 349:130735. https://doi.org/10.1016/j.snb.2021.130735

    Article  CAS  Google Scholar 

  116. Kong X, Li Y, Xu W et al (2021) Drosera-inspired dual-actuating double-layer hydrogel actuator. Macromol Rapid Commun 42:2100416. https://doi.org/10.1002/marc.202100416

    Article  CAS  Google Scholar 

  117. Zhu Q, Jin Y, Wang W, Sun G, Wang D (2019) Bioinspired smart moisture actuators based on nanoscale cellulose materials and porous, hydrophilic evoh nanofibrous membranes. ACS Appl Mater Interfaces 11:1440–1448. https://doi.org/10.1021/acsami.8b17538

    Article  CAS  Google Scholar 

  118. Mulakkal MC, Seddon AM, Whittell G, Manners I, Trask RS (2016) 4d fibrous materials: Characterising the deployment of paper architectures. Smart Mater Struct 25:095052. https://doi.org/10.1088/0964-1726/25/9/095052

    Article  CAS  Google Scholar 

  119. Hamedi MM, Campbell VE, Rothemund P, Güder F, Christodouleas DC, Bloch JF, Whitesides GM (2016) Electrically activated paper actuators. Adv Funct Mater 26:2446–2453. https://doi.org/10.1002/adfm.201505123

    Article  CAS  Google Scholar 

  120. Zhao Q, Chang Y, Yu Z, Liang Y, Ren L, Ren L (2020) Bionic intelligent soft actuators: High-strength gradient intelligent hydrogels with diverse controllable deformations and movements. J Mater Chem B 8:9362–9373. https://doi.org/10.1039/d0tb01927e

    Article  CAS  Google Scholar 

  121. Ionov L (2014) Hydrogel-based actuators: possibilities and limitations. Mater Today 17:494–503. https://doi.org/10.1016/j.mattod.2014.07.002

    Article  Google Scholar 

  122. Shao ZJ, Wu SS, Zhang Q, Xie H, Xiang T, Zhou SB (2021) Salt-responsive polyampholyte-based hydrogel actuators with gradient porous structures. Polym Chem 12:670–679. https://doi.org/10.1039/d0py01492c

    Article  CAS  Google Scholar 

  123. Wei J, Jia S, Guan J, Ma C, Shao Z (2021) Robust and highly sensitive cellulose nanofiber-based humidity actuators. ACS Appl Mater Interfaces 13:54417–54427. https://doi.org/10.1021/acsami.1c17894

    Article  CAS  Google Scholar 

  124. Wei J, Jia S, Wei J, Ma C, Shao Z (2021) Tough and multifunctional composite film actuators based on cellulose nanofibers toward smart wearables. ACS Appl Mater Interfaces 13:38700–38711. https://doi.org/10.1021/acsami.1c09653

    Article  CAS  Google Scholar 

  125. Xiao X, Ma H, Zhang X (2021) Flexible photodriven actuator based on gradient-paraffin-wax-filled ti3c2tx mxene film for bionic robots. ACS Nano 15:12826–12835. https://doi.org/10.1021/acsnano.1c03950

    Article  CAS  Google Scholar 

  126. Chen M, Frueh J, Wang D, Lin X, Xie H, He Q (2017) Polybenzoxazole nanofiber-reinforced moisture-responsive soft actuators. Sci Rep 7:769. https://doi.org/10.1038/s41598-017-00870-w

    Article  CAS  Google Scholar 

  127. Jin YX, Zhu Q, Zhong WB, Yan KL, Wang D (2018) Superfast, porous, and organic solvent-sensitive actuator based on evoh nanofibrous membrane and ps microspheres. J Phys Chem C 123:185–194. https://doi.org/10.1021/acs.jpcc.8b10090

    Article  CAS  Google Scholar 

  128. Li Z, Wang J, Dai L et al (2020) Asymmetrically patterned cellulose nanofibers/graphene oxide composite film for humidity sensing and moist-induced electricity generation. ACS Appl Mater Interfaces 12:55205–55214. https://doi.org/10.1021/acsami.0c17970

    Article  CAS  Google Scholar 

  129. Xu X, Hsieh YL (2019) Aqueous exfoliated graphene by amphiphilic nanocellulose and its application in moisture-responsive foldable actuators. Nanoscale 11:11719–11729. https://doi.org/10.1039/c9nr01602c

    Article  CAS  Google Scholar 

  130. Isogai A, Saito T, Fukuzumi H (2011) Tempo-oxidized cellulose nanofibers. Nanoscale 3:71–85. https://doi.org/10.1039/c0nr00583e

    Article  CAS  Google Scholar 

  131. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. https://doi.org/10.1021/bm0703970

    Article  CAS  Google Scholar 

  132. Okuzaki H, Kobayashi K, Yan H (2009) Non-woven fabric of poly(n-isopropylacrylamide) nanofibers fabricated by electrospinning. Synth Met 159:2273–2276. https://doi.org/10.1016/j.synthmet.2009.07.046

    Article  CAS  Google Scholar 

  133. Yin Z, Shi SL, Liang XP, Zhang MC, Zheng QS, Zhang YY (2019) Sweat-driven silk-yarn switches enabled by highly aligned gaps for air-conditioning textiles. Adv Fiber Mater 1:197–204. https://doi.org/10.1007/s42765-019-00021-y

    Article  Google Scholar 

  134. Shin B, Ha J, Lee M et al (2018) Hygrobot a self-locomotive ratcheted actuator powered by environmental humidity. Sci Robot 3:2629. https://doi.org/10.1126/scirobotics.aar2629

    Article  Google Scholar 

  135. Wang Y, Cheng Z, Liu Z, Kang H, Liu Y (2018) Cellulose nanofibers/polyurethane shape memory composites with fast water-responsivity. J Mater Chem B 6:1668–1677. https://doi.org/10.1039/c7tb03069j

    Article  CAS  Google Scholar 

  136. Sun GZ, Pan YZ, Zhan ZY et al (2011) Reliable and large curvature actuation from gradient-structured graphene oxide. J Phys Chem C 115:23741–23744. https://doi.org/10.1021/jp207986m

    Article  CAS  Google Scholar 

  137. Cao J, Zhou Z, Song Q et al (2020) Ultrarobust ti3c2tx mxene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructures. ACS Nano 14:7055–7065. https://doi.org/10.1021/acsnano.0c01779

    Article  CAS  Google Scholar 

  138. Zhang D, Liu J, Chen B, Zhao Y, Wang J, Ikeda T, Jiang L (2018) A hydrophilic/hydrophobic janus inverse-opal actuator via gradient infiltration. ACS Nano 12:12149–12158. https://doi.org/10.1021/acsnano.8b05758

    Article  CAS  Google Scholar 

  139. Mo KW, Lin JH, Wei P, Mei J, Chang CY (2021) Bioinspired gradient hydrogel actuators with rewritable patterns and programmable shape deformation. J Phys Chem C 9:10295–10302. https://doi.org/10.1039/d1tc02470a

    Article  CAS  Google Scholar 

  140. Xue P, Bisoyi HK, Chen Y et al (2021) Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by mxene nanosheets. Angew Chem Int Ed 60:3390–3396. https://doi.org/10.1002/anie.202014533

    Article  CAS  Google Scholar 

  141. Mao JW, Chen ZD, Han DD, Ma JN, Zhang YL, Sun HB (2019) Nacre-inspired moisture-responsive graphene actuators with robustness and self-healing properties. Nanoscale 11:20614–20619. https://doi.org/10.1039/c9nr06579b

    Article  CAS  Google Scholar 

  142. Mu JK, Hou CY, Wang HZ, Li YG, Zhang QH, Zhu MF (2015) Origami-inspired active graphene-based paper for programmable instant self-folding walking devices. Sci Adv 1:1500533. https://doi.org/10.1126/sciadv.1500533

    Article  Google Scholar 

  143. Han B, Gao YY, Zhang YL et al (2020) Multi-field-coupling energy conversion for flexible manipulation of graphene-based soft robots. Nano Energy 71:104578. https://doi.org/10.1016/j.nanoen.2020.104578

    Article  CAS  Google Scholar 

  144. Wang M, Li Q, Shi J et al (2020) Bio-inspired high sensitivity of moisture-mechanical go films with period-gradient structures. ACS Appl Mater Interfaces 12:33104–33112. https://doi.org/10.1021/acsami.0c07956

    Article  CAS  Google Scholar 

  145. Lv C, Sun XC, Xia H et al (2018) Humidity-responsive actuation of programmable hydrogel microstructures based on 3d printing. Sens Actuators B 259:736–744. https://doi.org/10.1016/j.snb.2017.12.053

    Article  CAS  Google Scholar 

  146. Zhou J, Wu C, Wu D, Wang Q, Chen Y (2018) Humidity-sensitive polymer xerogel actuators prepared by biaxial pre-stretching and drying. Chem Commun 54:11610–11613. https://doi.org/10.1039/c8cc06750c

    Article  CAS  Google Scholar 

  147. Ge Y, Cao R, Ye S et al (2018) A bio-inspired homogeneous graphene oxide actuator driven by moisture gradients. Chem Commun 54:3126–3129. https://doi.org/10.1039/c8cc00394g

    Article  CAS  Google Scholar 

  148. Wang ST, Yan S, Zhang L, Zhao HH, Yang T, Li FB, Li HJ (2020) Bioinspired poly(vinyl alcohol) film actuator powered by water evaporation under ambient conditions. Macromol Mater Eng 305:2000145. https://doi.org/10.1002/mame.202000145

    Article  CAS  Google Scholar 

  149. Arazoe H, Miyajima D, Akaike K et al (2016) An autonomous actuator driven by fluctuations in ambient humidity. Nat Mater 15:1084–1089. https://doi.org/10.1038/nmat4693

    Article  CAS  Google Scholar 

  150. Li JJ, Mou LL, Zhang R et al (2019) Multi-responsive and multi-motion bimorph actuator based on super-aligned carbon nanotube sheets. Carbon 148:487–495. https://doi.org/10.1016/j.carbon.2019.04.014

    Article  CAS  Google Scholar 

  151. Wu TH, Li JD, Li JT, Ye SM, Wei J, Guo JB (2016) A bio-inspired cellulose nanocrystal-based nanocomposite photonic film with hyper-reflection and humidity-responsive actuator properties. J Mater Chem C 4:9687–9696. https://doi.org/10.1039/c6tc02629j

    Article  CAS  Google Scholar 

  152. Tan H, Yu X, Tu Y, Zhang L (2019) Humidity-driven soft actuator built up layer-by-layer and theoretical insight into its mechanism of energy conversion. J Phys Chem Lett 10:5542–5551. https://doi.org/10.1021/acs.jpclett.9b02249

    Article  CAS  Google Scholar 

  153. Weng MC, Tang ZD, Zhu JM (2021) Multi-responsive soft paper-based actuators with programmable shape-deformations. Sens Actuators A 331:113016. https://doi.org/10.1016/j.sna.2021.113016

    Article  CAS  Google Scholar 

  154. Weng MC, Zhou PD, Chen LZ et al (2016) Multiresponsive bidirectional bending actuators fabricated by a pencil-on-paper method. Adv Funct Mater 26:7244–7253. https://doi.org/10.1002/adfm.201602772

    Article  CAS  Google Scholar 

  155. Yang S, Khare K, Lin PC (2010) Harnessing surface wrinkle patterns in soft matter. Adv Funct Mater 20:2550–2564. https://doi.org/10.1002/adfm.201000034

    Article  CAS  Google Scholar 

  156. Bandyopadhyay D, Gulabani R, Sharma A (2005) Instability and dynamics of thin liquid bilayers. Ind Eng Chem Res 44:1259–1272. https://doi.org/10.1021/ie049640r

    Article  CAS  Google Scholar 

  157. Annepu H, Sarkar J (2012) Squeezing instabilities and delamination in elastic bilayers: A linear stability analysis. Phys Rev E 86:051604. https://doi.org/10.1103/PhysRevE.86.051604

    Article  CAS  Google Scholar 

  158. Bandyopadhyay D, Sharma A (2007) Electric field induced instabilities in thin confined bilayers. J Colloid Interface Sci 311:595–608. https://doi.org/10.1016/j.jcis.2007.02.089

    Article  CAS  Google Scholar 

  159. Jiang B, Liu L, Gao Z, Feng Z, Zheng Y, Wang W (2019) Fast dual-stimuli-responsive dynamic surface wrinkles with high bistability for smart windows and rewritable optical displays. ACS Appl Mater Interfaces 11:40406–40415. https://doi.org/10.1021/acsami.9b10747

    Article  CAS  Google Scholar 

  160. Zhang YQ, Jiang HY, Li FB et al (2017) Graphene oxide based moisture-responsive biomimetic film actuators with nacre-like layered structures. J Mater Chem A 5:14604–14610. https://doi.org/10.1039/c7ta04208f

    Article  CAS  Google Scholar 

  161. Zhou P, Chen L, Yao L, Weng M, Zhang W (2018) Humidity- and light-driven actuators based on carbon nanotube-coated paper and polymer composite. Nanoscale 10:8422–8427. https://doi.org/10.1039/c7nr09580e

    Article  CAS  Google Scholar 

  162. He Y, Kong KR, Guo ZX et al (2021) A highly sensitive, reversible, and bidirectional humidity actuator by calcium carbonate ionic oligomers incorporated poly(vinylidene fluoride). Adv Funct Mater 31:2101291. https://doi.org/10.1002/adfm.202101291

    Article  CAS  Google Scholar 

  163. Mao Z, Zhu K, Pan L et al (2020) Direct-ink written shape-morphing film with rapid and programmable multimotion. Adv Mater Technol 5:1900974. https://doi.org/10.1002/admt.201900974

    Article  CAS  Google Scholar 

  164. Zhang LD, Chizhik S, Wen YZ, Naumov P (2016) Directed motility of hygroresponsive biomimetic actuators. Adv Funct Mater 26:1040–1053. https://doi.org/10.1002/adfm.201503922

    Article  CAS  Google Scholar 

  165. Dingler C, Muller H, Wieland M, Fauser D, Steeb H, Ludwigs S (2021) From understanding mechanical behavior to curvature prediction of humidity-triggered bilayer actuators. Adv Mater 33:e2007982. https://doi.org/10.1002/adma.202007982

    Article  CAS  Google Scholar 

  166. Fratzl P, Barth FG (2009) Biomaterial systems for mechanosensing and actuation. Nature 462:442–448. https://doi.org/10.1038/nature08603

    Article  CAS  Google Scholar 

  167. Li YC, Du MQ, Yang L et al (2021) Hydrophilic domains compose of interlocking cation-π blocks for constructing hard actuator with robustness and rapid humidity responsiveness. Chem Eng J 414:128820. https://doi.org/10.1016/j.cej.2021.128820

    Article  CAS  Google Scholar 

  168. An N, Wang X, Li Y, Zhang L, Lu Z, Sun J (2019) Healable and mechanically super-strong polymeric composites derived from hydrogen-bonded polymeric complexes. Adv Mater 31:e1904882. https://doi.org/10.1002/adma.201904882

    Article  CAS  Google Scholar 

  169. Shapiro B, Smela E (2006) Bending actuators with maximum curvature and force and zero interfacial stress. J Intel Mat Syst Str 18:181–186. https://doi.org/10.1177/1045389x06063801

    Article  Google Scholar 

  170. Ma WR, Kwan KW, Wu RN, Ngan AHW (2020) Chemo-mechanical instability of light-induced humidity responsive bilayered actuators. Extrem Mech Lett 39:100801. https://doi.org/10.1016/j.eml.2020.100801

    Article  Google Scholar 

  171. Wang W, Xiang C, Sun D, Li M, Yan K, Wang D (2019) Photothermal and moisture actuator made with graphene oxide and sodium alginate for remotely controllable and programmable intelligent devices. ACS Appl Mater Interfaces 11:21926–21934. https://doi.org/10.1021/acsami.9b05136

    Article  CAS  Google Scholar 

  172. Gao JS, Zhao XX, Wen JP, Hu DT, Li RL, Wang K (2021) Chinese calligraphy inspired design of humidity/light dual responsive magic paper. Adv Mater Technol 6:2100044. https://doi.org/10.1002/admt.202100044

    Article  CAS  Google Scholar 

  173. Lan RC, Gao YZ, Shen C et al (2021) Humidity-responsive liquid crystalline network actuator showing synergistic fluorescence color change enabled by aggregation induced emission luminogen. Adv Funct Mater 31:2010578. https://doi.org/10.1002/adfm.202010578

    Article  CAS  Google Scholar 

  174. Li X, Liu J, Li D, Huang S, Huang K, Zhang X (2021) Bioinspired multi-stimuli responsive actuators with synergistic color and morphing change abilities. Adv Sci. https://doi.org/10.1002/advs.202101295

    Article  Google Scholar 

  175. Huang QL, Xu HL, Li MT et al (2018) Stretchable peg-da hydrogel-based whispering-gallery-mode microlaser with humidity responsiveness. J Lightwave Technol 36:819–824. https://doi.org/10.1109/jlt.2017.2762696

    Article  CAS  Google Scholar 

  176. Huang Y, Cheng H, Shi G, Qu L (2017) Highly efficient moisture-triggered nanogenerator based on graphene quantum dots. ACS Appl Mater Interfaces 9:38170–38175. https://doi.org/10.1021/acsami.7b12542

    Article  CAS  Google Scholar 

  177. Zhao F, Cheng H, Zhang Z, Jiang L, Qu L (2015) Direct power generation from a graphene oxide film under moisture. Adv Mater 27:4351–4357. https://doi.org/10.1002/adma.201501867

    Article  CAS  Google Scholar 

  178. Lee S, Jang H, Lee H, Yoon D, Jeon S (2019) Direct fabrication of a moisture-driven power generator by laser-induced graphitization with a gradual defocusing method. ACS Appl Mater Interfaces 11:26970–26975. https://doi.org/10.1021/acsami.9b08056

    Article  CAS  Google Scholar 

  179. Zhao F, Liang Y, Cheng HH, Jiang L, Qu LT (2016) Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ Sci 9:912–916. https://doi.org/10.1039/c5ee03701h

    Article  CAS  Google Scholar 

  180. Liang Y, Zhao F, Cheng ZH et al (2018) Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energy Environ Sci 11:1730–1735. https://doi.org/10.1039/c8ee00671g

    Article  CAS  Google Scholar 

  181. Shen D, Xiao M, Zou G, Liu L, Duley WW, Zhou YN (2018) Self-powered wearable electronics based on moisture enabled electricity generation. Adv Mater 30:1705925. https://doi.org/10.1002/adma.201705925

    Article  CAS  Google Scholar 

  182. Mandal S, Roy S, Mandal A, Ghoshal T, Das G, Singh A, Goswami DK (2020) Protein-based flexible moisture-induced energy-harvesting devices as self-biased electronic sensors. ACS Appl Electron Mater 2:780–789. https://doi.org/10.1021/acsaelm.9b00842

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Science Foundation of China (No. 61803088 and No. 61903206) and Joint fund of Science & Technology Department of Liaoning Province and State Key Laboratory of Robotics, China (Grant No. 2021-KF-22-13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanan Wei or Ligang Yao.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, W., Wei, F., Yao, L. et al. A review of humidity-driven actuator: toward high response speed and practical applications. J Mater Sci 57, 12202–12235 (2022). https://doi.org/10.1007/s10853-022-07344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07344-z

Navigation