Skip to main content
Log in

Gelatin–alginate–hyaluronic acid inks for 3D printing: effects of bioglass addition on printability, rheology and scaffold tensile modulus

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Natural hydrogels are widely used for 3D-bioprinting because of their qualities for tissue engineering. Recently, hydrogels have been combined with bioactive glasses, due to their angiogenic properties that aid tissue regeneration. In this work, we studied the printability and the rheological properties of gelatin–alginate–hyaluronic acid inks with 2–8% wt of 45S5 bioglass (BG) that followed a pseudoplastic behavior along the 3D-printing process. The reduction in the storage modulus of the inks after adding BG indicates that the microparticles might disrupt the polymeric network; furthermore, a reduction in the viscosity was determined at BG concentrations above 6%. Inks without BG or up to 2% evidenced the best printing fidelity on 10% infill scaffolds. The tensile modulus of crosslinked 40%-filled scaffolds increased from 130 kPa (without BG) to 160 kPa (6–8% BG). Moreover, a hydroxyapatite layer appeared in scaffolds containing BG 6% and 8% wt after being cultured for 2 days. Attachment and growth of fibroblasts on the scaffolds revealed their cytocompatibility, making these materials an alternative for further research on soft tissues regeneration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The raw and processed data required to reproduce these findings are available to download from [https://data.mendeley.com/datasets/wwkpzj3vfk/2] [72].

References

  1. Tarassoli SP, Jessop ZM, Al-Sabah A, Gao N, Whitaker S, Doak S, Whitaker IS (2018) Skin tissue engineering using 3D bioprinting: an evolving research field. J Plast Reconstr Aesthetic Surg 71:615–623. https://doi.org/10.1016/j.bjps.2017.12.006

    Article  Google Scholar 

  2. Gao G, Cui X (2016) Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnol Lett 38:203–211. https://doi.org/10.1007/s10529-015-1975-1

    Article  CAS  Google Scholar 

  3. Miri AK, Khalilpour A, Cecen B, Maharjan S, Shin SR, Khademhosseini A (2019) Multiscale bioprinting of vascularized models. Biomaterials 198:204–216. https://doi.org/10.1016/j.biomaterials.2018.08.006

    Article  CAS  Google Scholar 

  4. Carrow JK, Kerativitayanan P, Jaiswal MK, Lokhande G, Gaharwar AK (2015) Polymers for bioprinting. In: Atala A, Yoo JJ (eds) Essentials of 3D biofabrication and translation. Elsevier Ltd, Berlin, pp 229–248. https://doi.org/10.1016/B978-0-12-800972-7.00013-X

  5. Qiao Y, Xu S, Zhu T, Tang N, Bai X, Zheng C (2020) Preparation of printable double-network hydrogels with rapid self-healing and high elasticity based on hyaluronic acid for controlled drug release. Polymer (Guildf) 186:121994. https://doi.org/10.1016/j.polymer.2019.121994

    Article  CAS  Google Scholar 

  6. Lu J, Guan F, Cui F, Sun X, Zhao L, Wang Y, Wang X (2019) Enhanced angiogenesis by the hyaluronic acid hydrogels immobilized with a VEGF mimetic peptide in a traumatic brain injury model in rats. Regen Biomater 6:325–334. https://doi.org/10.1093/rb/rbz027

    Article  CAS  Google Scholar 

  7. Choi YS, Hong SR, Lee YM, Song KW, Park MH, Nam YS (1999) Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge. J Biomed Mater Res 48:631–639. https://doi.org/10.1002/(SICI)1097-4636(1999)48:5<631::AID-JBM6>3.0.CO;2-Y

  8. Zhai P, Peng X, Li B, Liu Y, Sun H, Li X (2019) The application of hyaluronic acid in bone regeneration. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.10.169

    Article  Google Scholar 

  9. Contessi Negrini N, Celikkin N, Tarsini P, Farè S, Święszkowski W (2020) Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering. Biofabrication 12:025001. https://doi.org/10.1088/1758-5090/ab56f9

    Article  CAS  Google Scholar 

  10. Axpe E, Oyen ML (2016) Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci. https://doi.org/10.3390/ijms17121976

    Article  Google Scholar 

  11. Aderibigbe BA, Buyana B (2018) Alginate in wound dressings. Pharmaceutics. https://doi.org/10.3390/pharmaceutics10020042

    Article  Google Scholar 

  12. Gao T, Gillispie GJ, Copus JS, Kumar APR, Seol YJ, Atala A, Yoo JJ, Lee SJ (2018) Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach. Biofabrication. https://doi.org/10.1088/1758-5090/aacdc7

    Article  Google Scholar 

  13. Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, Soker S (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1:792–802

    Article  CAS  Google Scholar 

  14. Heidenreich AC, Pérez-Recalde M, González Wusener A, Hermida ÉB (2020) Collagen and chitosan blends for 3D bioprinting: a rheological and printability approach. Test, Polym. https://doi.org/10.1016/j.polymertesting.2019.106297

    Book  Google Scholar 

  15. Wüst S, Godla ME, Müller R, Hofmann S (2014) Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater 10:630–640. https://doi.org/10.1016/j.actbio.2013.10.016

    Article  CAS  Google Scholar 

  16. Shim JH, Lee JS, Kim JY, Cho DW (2012) Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromechanics Microengineering. https://doi.org/10.1088/0960-1317/22/8/085014

    Article  Google Scholar 

  17. Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 16:1489–1496. https://doi.org/10.1021/acs.biomac.5b00188

    Article  CAS  Google Scholar 

  18. Wang Y, Huang X, Shen Y, Hang R, Zhang X, Wang Y, Yao X, Tang B (2019) Direct writing alginate bioink inside pre-polymers of hydrogels to create patterned vascular networks. J Mater Sci 54:7883–7892. https://doi.org/10.1007/s10853-019-03447-2

    Article  CAS  Google Scholar 

  19. Mohandas A, Anisha BS, Chennazhi KP, Jayakumar R (2015) Chitosan-hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds. Colloids Surfaces B Biointerfaces 127:105–113. https://doi.org/10.1016/j.colsurfb.2015.01.024

    Article  CAS  Google Scholar 

  20. Xiong S, Zhang X, Lu P, Wu Y, Wang Q, Sun H, Heng BC, Bunpetch V, Zhang S, Ouyang H (2017) A Gelatin-sulfonated silk composite scaffold based on 3d printing technology enhances skin regeneration by stimulating epidermal growth and dermal neovascularization. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-04149-y

    Article  CAS  Google Scholar 

  21. Sun G, Shen YI, Kusuma S, Fox-Talbot K, Steenbergen CJ, Gerecht S (2011) Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials 32:95–106. https://doi.org/10.1016/j.biomaterials.2010.08.091

    Article  CAS  Google Scholar 

  22. Yu H, Peng J, Xu Y, Chang J, Li H (2016) Bioglass activated skin tissue engineering constructs for wound healing. ACS Appl Mater Interfaces 8:703–715. https://doi.org/10.1021/acsami.5b09853

    Article  CAS  Google Scholar 

  23. Li H, Wu Z, Zhou Y, Chang J (2019) Bioglass for skin regeneration. In: García-Gareta E (eds) Biomaterials for skin repair and regeneration. Elsevier Ltd, Berlin,  pp 225–250. https://doi.org/10.1016/B978-0-08-102546-8.00008-X

  24. Leu A, Leach JK (2008) Proangiogenic potential of a collagen/bioactive glass substrate. Pharm Res 25:1222–1229. https://doi.org/10.1007/s11095-007-9508-9

    Article  CAS  Google Scholar 

  25. Kolan KCR, Semon JA, Bromet B, Day DE, Leu MC (2019) Bioprinting with human stem cell-laden alginate-gelatin bioink and bioactive glass for tissue engineering. Int J Bioprinting 5:3–15. https://doi.org/10.18063/ijb.v5i2.2.204

    Article  CAS  Google Scholar 

  26. Liu G, Pastakia M, Fenn MB, Kishore V (2016) Saos-2 cell-mediated mineralization on collagen gels: effect of densification and bioglass incorporation. J Biomed Mater Res—Part A 104:1121–1134. https://doi.org/10.1002/jbm.a.35651

    Article  CAS  Google Scholar 

  27. Gao L, Zhou Y, Peng J, Xu C, Xu Q, Xing M, Chang J (2019) A novel dual-adhesive and bioactive hydrogel activated by bioglass for wound healing. NPG Asia Mater. https://doi.org/10.1038/s41427-019-0168-0

    Article  Google Scholar 

  28. Zhou Z, Chen J, Peng C, Huang T, Zhou H, Ou B, Chen J, Liu Q, He S, Cao D, Huang H, Xiang L (2014) Fabrication and physical properties of gelatin/sodium alginate/hyaluronic acid composite wound dressing hydrogel. J Macromol Sci Part A Pure Appl Chem 51:318–325. https://doi.org/10.1080/10601325.2014.882693

    Article  CAS  Google Scholar 

  29. Alemdar N (2016) Fabrication of a novel bone ash-reinforced gelatin/alginate/hyaluronic acid composite film for controlled drug delivery. Carbohydr Polym 151:1019–1026. https://doi.org/10.1016/j.carbpol.2016.06.033

    Article  CAS  Google Scholar 

  30. Khorshidi S, Karkhaneh A (2016) A self-crosslinking tri-component hydrogel based on functionalized polysaccharides and gelatin for tissue engineering applications. Mater Lett 164:468–471. https://doi.org/10.1016/j.matlet.2015.11.041

    Article  CAS  Google Scholar 

  31. Singh D, Tripathi A, Zo SM, Singh D, Han SS (2014) Synthesis of composite gelatin-hyaluronic acid-alginate porous scaffold and evaluation for in vitro stem cell growth and in vivo tissue integration. Colloids Surfaces B Biointerfaces 116:502–509. https://doi.org/10.1016/j.colsurfb.2014.01.049

    Article  CAS  Google Scholar 

  32. Nocera AD, Comín R, Salvatierra NA, Cid MP (2018) Development of 3D printed fibrillar collagen scaffold for tissue engineering. Biomed Microdevices 20:1–13. https://doi.org/10.1007/s10544-018-0270-z

    Article  CAS  Google Scholar 

  33. Amer MH, Rose FRAJ, Shakesheff KM, Modo M, White LJ (2017) Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. Med, Npj Regen. https://doi.org/10.1038/s41536-017-0028-x

    Book  Google Scholar 

  34. Kyle S, Jessop ZM, Al-Sabah A, Whitaker IS (2017) Printability’’ of candidate biomaterials for extrusion based 3D printing: state-of-the-art. Adv Healthc Mater 6:1–16. https://doi.org/10.1002/adhm.201700264

    Article  CAS  Google Scholar 

  35. Øyvind H, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  36. Ouyang L, Yao R, Zhao Y, Sun W (2016) Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 8:1–12. https://doi.org/10.1088/1758-5090/8/3/035020

    Article  CAS  Google Scholar 

  37. Zuidema JM, Rivet CJ, Gilbert RJ, Morrison FA, A, (2014) protocol for rheological characterization of hydrogels for tissue engineering strategies. J Biomed Mater Res–Part B Appl Biomater 102:1063–1073. https://doi.org/10.1002/jbm.b.33088

    Article  CAS  Google Scholar 

  38. Malvern Instruments (2012) White paper—understanding yield stress. https://www.atascientific.com.au/wp-content/uploads/2017/02/MRK1782-01.pdf. Accessed 16 June 2021

  39. Malvern Instruments (2016) White paper—a basic introduction to rheology. https://cdn.technologynetworks.com/TN/Resources/PDF/WP160620BasicIntroRheology.pdf. Accessed 16 June 2021

  40. Liu S, Hu Y, Zhang J, Bao S, Xian L, Dong X, Zheng W, Li Y, Gao H, Zhou W (2019) Bioactive and biocompatible macroporous scaffolds with tunable performances prepared based on 3D printing of the pre-crosslinked sodium alginate/hydroxyapatite hydrogel ink. Macromol Mater Eng 304:1–11. https://doi.org/10.1002/mame.201800698

    Article  CAS  Google Scholar 

  41. Hazur J, Detsch R, Karakaya E, Kaschta J, Teßmar J, Schneidereit D, Friedrich O, Schubert DW, Boccaccini AR (2020) Improving alginate printability for biofabrication: establishment of a universal and homogeneous pre-crosslinking technique. Biofabrication. https://doi.org/10.1088/1758-5090/ab98e5

    Article  Google Scholar 

  42. Daniel-da-Silva AL, Pinto F, Lopes-da-Silva JA, Trindade T, Goodfellow BJ, Gil AM (2008) Rheological behavior of thermoreversible κ-carrageenan/nanosilica gels. J Colloid Interface Sci 320:575–581. https://doi.org/10.1016/j.jcis.2008.01.035

    Article  CAS  Google Scholar 

  43. Puvanenthiran A, Stevovitch-Rykner C, McCann TH, Day L (2014) Synergistic effect of milk solids and carrot cell wall particles on the rheology and texture of yoghurt gels. Food Res Int 62:701–708. https://doi.org/10.1016/j.foodres.2014.04.023

    Article  CAS  Google Scholar 

  44. Lu HD, Charati MB, Kim IL, Burdick JA (2012) Injectable shear-thinning hydrogels engineered with a self-assembling Dock-and-Lock mechanism. Biomaterials 33:2145–2153. https://doi.org/10.1016/j.biomaterials.2011.11.076

    Article  CAS  Google Scholar 

  45. Gao F, Xu Z, Liang Q, Liu B, Li H, Wu Y, Zhang Y, Lin Z, Wu M, Ruan C, Liu W (2018) Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect. Adv Funct Mater 28:1–13. https://doi.org/10.1002/adfm.201706644

    Article  CAS  Google Scholar 

  46. Guo Z, Xia J, Mi S, Sun W (2020) Mussel-inspired naturally derived double-network hydrogels and their application in 3D printing: from soft, injectable bioadhesives to mechanically strong hydrogels. ACS Biomater Sci Eng 6:1798–1808. https://doi.org/10.1021/acsbiomaterials.9b01864

    Article  CAS  Google Scholar 

  47. Wang LL, Highley CB, Yeh Y-C, Galarraga JH, Uman S, Burdick JA (2018) 3D extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks, Arthritis Care Res. Biomed Mater Res A 106:865–875. https://doi.org/10.1002/jbm.a.36323

    Article  CAS  Google Scholar 

  48. Wilson SA, Cross LM, Peak CW, Gaharwar AK (2017) Shear-thinning and thermo-reversible nanoengineered inks for 3D bioprinting. ACS Appl Mater Interfaces 9:43449–43458. https://doi.org/10.1021/acsami.7b13602

    Article  CAS  Google Scholar 

  49. Townsend JM, Beck EC, Gehrke SH, Berkland CJ, Detamore MS (2019) Flow behavior prior to crosslinking: the need for precursor rheology for placement of hydrogels in medical applications and for 3D bioprinting. Prog Polym Sci 91:126–140. https://doi.org/10.1016/j.progpolymsci.2019.01.003

    Article  CAS  Google Scholar 

  50. Picout DR, Ross-Murphy SB (2003) Rheology of biopolymer solutions and gels. Sci World J 3:105–121. https://doi.org/10.1100/tsw.2003.15

    Article  CAS  Google Scholar 

  51. Iwamoto S, Kumagai H (1998) Analysis of the dielectric relaxation of a gelatin solution. Biosci Biotechnol Biochem 62:1381–1387. https://doi.org/10.1271/bbb.62.1381

    Article  CAS  Google Scholar 

  52. Mukherjee A, Srinivas G, Bagchi B (2001) Reentrant behavior of relaxation time with viscosity at varying composition in binary mixtures. Phys Rev Lett 86:5926–5929. https://doi.org/10.1103/PhysRevLett.86.5926

    Article  CAS  Google Scholar 

  53. Ahmed J, Mulla M, Maniruzzaman M (2019) Rheological and dielectric behavior of 3d-printable chitosan/graphene oxide hydrogels. ACS Biomater Sci Eng 6:88–99. https://doi.org/10.1021/acsbiomaterials.9b00201

    Article  CAS  Google Scholar 

  54. Zhangfeng Z (2010) Rheology and phase change of polymers and vesicles. PhD Dissertation, National University of Singapore

  55. Sepulveda P, Jones JR, Hench LL (2002) In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res 62:301–311. https://doi.org/10.1002/jbm.10207

    Article  CAS  Google Scholar 

  56. Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M (2007) Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res 86:754–757. https://doi.org/10.1177/154405910708600813

    Article  CAS  Google Scholar 

  57. Gao Q, He Y, Zhong Fu J, Liu A, Ma L (2015) Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61:203–215. https://doi.org/10.1016/j.biomaterials.2015.05.031

    Article  CAS  Google Scholar 

  58. Shamloo A, Sarmadi M, Aghababaie Z, Vossoughi M (2018) Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres. Int J Pharm 537:278–289. https://doi.org/10.1016/j.ijpharm.2017.12.045

    Article  CAS  Google Scholar 

  59. Zhou Y, Gao L, Peng J, Xing M, Han Y, Wang X, Xu Y, Chang J (2018) Bioglass activated albumin hydrogels for wound healing. Adv Healthc Mater 7:1–13. https://doi.org/10.1002/adhm.201800144

    Article  CAS  Google Scholar 

  60. Jiang Y, Zhou J, Shi H, Zhao G, Zhang Q, Feng C, Xv X (2020) Preparation of cellulose nanocrystal/oxidized dextran/gelatin (CNC/OD/GEL) hydrogels and fabrication of a CNC/OD/GEL scaffold by 3D printing. J Mater Sci 55:2618–2635. https://doi.org/10.1007/s10853-019-04186-0

    Article  CAS  Google Scholar 

  61. Alexander H, Cook T (2006) Variations with age in the mechanical properties of human skin in vivo. J Tissue Viability 16:6–11. https://doi.org/10.1016/S0965-206X(06)63002-7

    Article  CAS  Google Scholar 

  62. Guimarães CF, Gasperini L, Marques AP, Reis RL (2020) The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater 5:351–370. https://doi.org/10.1038/s41578-019-0169-1

    Article  Google Scholar 

  63. Thompson ID, Hench LL (1998) Mechanical properties of bioactive glasses, glass-ceramics and composites. Proc Inst Mech Eng Part H J Eng Med 212:127–136. https://doi.org/10.1243/0954411981533908

    Article  CAS  Google Scholar 

  64. Yoruç ABH, Aydınoğlu A (2017) The precursors effects on biomimetic hydroxyapatite ceramic powders. Mater Sci Eng C 75:934–946. https://doi.org/10.1016/j.msec.2017.02.049

    Article  CAS  Google Scholar 

  65. Martín AR, Patel JM, Zlotnick HM, Carey JL, Mauck RL (2019) Emerging therapies for cartilage regeneration in currently excluded ‘red knee’ populations. Med, Npj Regen. https://doi.org/10.1038/s41536-019-0074-7

    Book  Google Scholar 

  66. Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X (2014) Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J 9:1–23. https://doi.org/10.1002/biot.201400305.Submitted

    Article  Google Scholar 

  67. Fedorovich NE, Schuurman W, Wijnberg HM, Prins HJ, Van Weeren PR, Malda J, Alblas J, Dhert WJA (2012) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng—Part C Methods 18:33–44. https://doi.org/10.1089/ten.tec.2011.0060

    Article  CAS  Google Scholar 

  68. Okabayashi R, Nakamura M, Okabayashi T, Tanaka Y, Nagai A, Yamashita K (2009) Efficacy of polarized hydroxyapatite and silk fibroin composite dressing gel on epidermal recovery from full-thickness skin wounds. J Biomed Mater Res—Part B Appl Biomater 90:641–646. https://doi.org/10.1002/jbm.b.31329

    Article  CAS  Google Scholar 

  69. Ji DY, Kuo TF, Da Wu H, Yang JC, Lee SY (2012) A novel injectable chitosan/polyglutamate polyelectrolyte complex hydrogel with hydroxyapatite for soft-tissue augmentation. Carbohydr Polym 89:1123–1130. https://doi.org/10.1016/j.carbpol.2012.03.083

    Article  CAS  Google Scholar 

  70. Liu M, Huang C, Zhao Z, Wang A, Li P, Fan Y, Zhou G (2019) Nano-hydroxyapatite(n-HA) involved in the regeneration of rat nerve injury triggered by overloading stretch. Med Nov Technol Devices 4:100022. https://doi.org/10.1016/j.medntd.2019.100022

    Article  Google Scholar 

  71. Ribeiro N, Sousa A, Cunha-Reis C, Oliveira AL, Granja PL, Monteiro FJ, Sousa SR (2021) New prospects in skin regeneration and repair using nanophased hydroxyapatite embedded in collagen nanofibers, nanomedicine nanotechnology. Biol Med 33:102353. https://doi.org/10.1016/j.nano.2020.102353

    Article  CAS  Google Scholar 

  72. Bertuola M, Aráoz B, Gilabert U, Gonzalez-Wusener A, Pérez-Recalde M, Arregui C, Hermida ÉB (2020) Inks of gelatin-alginate-hyaluronic acid for 3D printing: effects of bioglass 45S5 addition on printability, rheology and on scaffold tensile modulus. Mendeley Data. https://doi.org/10.17632/wwkpzj3vfk.4

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Lantos Lab for SEM-EDS measurements, Laboratory of Applied Crystallography of National University of San Martin for the X-ray determination, LIFE-SI and its developer Adén Díaz Nocera for his constant support with the 3D-bioprinter and Ing. Lucía Garaventa for the valuable discussions about the rheology of the systems.

Funding

This study was funded by the Argentinian Ministry of Education through its Secretary of University Policies—“Universities Adding Value” (Grant: RESOL-2016–2373-E-APN-SECPU#ME, Project: Bioinks). M.B. is a postdoctoral fellow of CONICET. B.A., A.G.W., M.P.R., C.O.A. and E.B.H. are researchers at CONICET.

Author information

Authors and Affiliations

Authors

Contributions

UG, AG-W, ÉBH and CA collected resources. MP-R, MB and BA performed writing—original draft. MP-R, MB, BA and ÉBH performed writing—review & editing. BA and ÉBH were responsible for supervision and performed project administration. ÉBH was responsible for funding acquisition. MP-R, AG-W, CA and MB were involved in visualization. MB was involved in formal analysis and validation. AG-W, MB, BA and CA performed methodology. UG, MB and BA were involved in investigation. Conceptualization was performed by MB and BA.

Corresponding authors

Correspondence to Marcos Bertuola or Beatriz Aráoz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 986 KB)

Supplementary file2 (MP4 374864 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertuola, M., Aráoz, B., Gilabert, U. et al. Gelatin–alginate–hyaluronic acid inks for 3D printing: effects of bioglass addition on printability, rheology and scaffold tensile modulus. J Mater Sci 56, 15327–15343 (2021). https://doi.org/10.1007/s10853-021-06250-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06250-0

Navigation