Skip to main content
Log in

PAN-derived electrospun nanofibers for supercapacitor applications: ongoing approaches and challenges

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The increasing demand for high-performance supercapacitors stimulates the rapid development of separators and electrodes. PAN-derived nanofibers via electrospinning with one-dimensional morphology, tunable nanostructure, mechanical flexibility, self-functionalities and those that can be added onto them have witnessed the intensive development and extensive applications of supercapacitors. However, the conventional PAN-derived carbon nanofibers are generally featured with rather inferior electrical conductivity and lower specific surface area. Beyond that, PAN-derived carbon nanofibers normally exhibit unsatisfactory electrochemical performance in supercapacitors. So far, several strategies have been proposed, by some of which, conspicuous success has been achieved in addressing the above key issues. Here, a comprehensive review on recent advances of the use of PAN-derived carbon nanofibers as the electrode materials for supercapacitors are provided with a focus on strategies to improve their electrochemical performances, and the basic scientific principles involved in these preparation processes. Next, the recent application progress of PAN-derived nanofibers as the electrode separators for supercapacitors is introduced. Finally, we put forward a series of critical challenges in the above research area and propose some correlative ideas for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Shen L, Yu L, Yu X-Y, Zhang X, Lou XW (2015) Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew Chemie-Int Edit 54:1868–1872. https://doi.org/10.1002/anie.201409776

    Article  CAS  Google Scholar 

  2. Zhang Y, Wang F, Zhu H, Zhang D, Chen J (2017) Elongated TiO2 nanotubes directly grown on graphene nanosheets as an efficient material for supercapacitors and absorbents. Composit Part a Appl Sci Manuf 101:297–305. https://doi.org/10.1016/j.compositesa.2017.06.026

    Article  CAS  Google Scholar 

  3. Li L, Zhang M, Zhang X, Zhang Z (2017) New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. J Power Sources 364:234–241. https://doi.org/10.1016/j.jpowsour.2017.08.029

    Article  CAS  Google Scholar 

  4. Zhang S, Zhu J, Qing Y, Wang L, Zhao J, Li J, Tian W, Jia D, Fan Z (2018) Ultramicroporous carbons puzzled by graphene quantum dots: integrated high gravimetric, volumetric, and areal capacitances for supercapacitors. Adv Funct Mater 28. https://doi.org/10.1002/adfm.201805898

  5. Liu L, Feng Y, Liang J, Li S, Tian B, Yao W, Wu W (2019) Structure-designed fabrication of all-printed flexible in-plane solid-state supercapacitors for wearable electronics. J Power Sources 425:195–203. https://doi.org/10.1016/j.jpowsour.2019.03.118

    Article  CAS  Google Scholar 

  6. Tuan Sang T, Dutta NK, Choudhury NR (2019) Graphene-based inks for printing of planar micro-supercapacitors: a review. Materials 12. https://doi.org/10.3390/ma12060978

  7. Li P, Ma X, Liu F, Zhao Y L, Ding Y, Yang J (2020) Synthesis of highly ordered mesoporous carbons nanofiber web based on electrospinning strategy for supercapacitor. Microporous Mesoporous Mater 305.https://doi.org/10.1016/j.micromeso.2020.110283

  8. Arthi R, Jaikumar V, Muralidharan P (2019) Development of electrospun PVdF polymer membrane as separator for supercapacitor applications. Energy Sources Part A-Recovery Util Eniron Effhttps://doi.org/10.1080/15567036.2019.1649746

  9. Kumar R, Bhuvana T, Sharma A (2020) Ammonolysis synthesis of nickel molybdenum nitride nanostructures for high-performance asymmetric supercapacitors. New J Chem 44:14067–14074. https://doi.org/10.1039/d0nj01693d

    Article  CAS  Google Scholar 

  10. Shen C, Xu H, Liu L, Hu H, Chen S, Su L, Wang L (2020) EDTA-2Na assisted dynamic hydrothermal synthesis of orthorhombic LiMnO2 for lithium ion battery. J Alloy Compd 830. https://doi.org/10.1016/j.jallcom.2020.154599

  11. Zang X, Jiang Y, Sanghadasa M, Lin L (2020) Chemical vapor deposition of 3D graphene/carbon nanotubes networks for hybrid supercapacitors. Sens Actuator A-Phys 304.https://doi.org/10.1016/j.sna.2020.111886

  12. Li B, Sun Z, Zhao Y, Tian Y, Tan T, Gao F, Li J (2019) Functional separator for Li/S batteries based on boron-doped graphene and activated carbon. J Nanopart Res 21.https://doi.org/10.1007/s11051-018-4451-8

  13. Mohamed Ismail M, Hemaanandhan S, Mani D, Arivanandhan M, Anbalagan G, Jayavel R (2020) Facile preparation of Mn3O4/rGO hybrid nanocomposite by sol-gel in situ reduction method with enhanced energy storage performance for supercapacitor applications. J Sol-Gel Sci Technol 93:703–713. https://doi.org/10.1007/s10971-019-05184-z

    Article  CAS  Google Scholar 

  14. Yang H, Kou S (2019) Recent advances of flexible electrospun nanofibers-based electrodes for electrochemical supercapacitors: a minireview. Int J Electrochem Sci 14:7811–7831. https://doi.org/10.20964/2019.08.28

    Article  CAS  Google Scholar 

  15. Liu Y, Zeng Z, Sharma RK, Gbewonyo S, Allado K, Zhang L, Wei J (2019) A bi-functional configuration for a metal-oxide film supercapacitor. J Power Sources 409:1–5. https://doi.org/10.1016/j.jpowsour.2018.10.084

    Article  CAS  Google Scholar 

  16. He T, Fu Y, Meng X, Yu X, Wang X (2018) A novel strategy for the high performance supercapacitor based on polyacrylonitrile-derived porous nanofibers as electrode and separator in ionic liquid electrolyte. Electrochim Acta 282:97–104. https://doi.org/10.1016/j.electacta.2018.06.029

    Article  CAS  Google Scholar 

  17. He T, Jia R, Lang X, Wu X, Wang Y (2017) Preparation and electrochemical performance of PVdF ultrafine porous fiber separator-cum-electrolyte for supercapacitor. J Electrochem Soc 164:E379–E384. https://doi.org/10.1149/2.0631713jes

    Article  CAS  Google Scholar 

  18. Jabbarnia A, Khan WS, Ghazinezami A, Asmatulu R (2016) Investigating the thermal, mechanical, and electrochemical properties of PVdF/PVP nanofibrous membranes for supercapacitor applications. J Appl Polym Sci 133. https://doi.org/10.1002/app.43707

  19. Pazhamalai P, Krishnamoorthy K, Mariappan VK, Sahoo S, Manoharan S, Kim SJ (2018) A high efficacy self-charging MoSe2 solid-state supercapacitor using electrospun nanofibrous piezoelectric separator with ionogel electrolyte. Adv Mater Interfaces 5. https://doi.org/10.1002/admi.201800055

  20. Tian D, Lu X, Li W, Li Y, Wang C (2020) Research on electrospun nanofiber-based binder-free electrode materials for supercapacitors. Acta Phys Chim Sin 36. https://doi.org/10.3866/pku. whxb201904056

  21. Ludwig T, Bohr C, Queralto A, Frohnhoven R, Fischer T, Mathur S (2018) Inorganic nanofibers by electrospinning techniques and their application in energy conversion and storage systems. Semicond Semimet 98:1–70. https://doi.org/10.1016/bs.semsem.2018.04.003

    Article  CAS  Google Scholar 

  22. Tian D, Song N, Zhong M, Lu X, Wang C (2020) Bimetallic MOF nanosheets decorated on electrospun nanofibers for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces 12:1280–1291. https://doi.org/10.1021/acsami.9b16420

    Article  CAS  Google Scholar 

  23. Zhang B, Kang F, Tarascon JM, Kim JK (2015) Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog Mater Sci 76:319–380. https://doi.org/10.1016/j.pmatsci.2015.08.002

    Article  CAS  Google Scholar 

  24. Nie G, Zhao X, Luan Y, Jiang J, Kou Z, Wang J (2020) Key issues facing electrospun carbon nanofibers in energy applications: on-going approaches and challenges. Nanoscale 12. https://doi.org/10.1039/D0NR03425H

  25. Wang X, Zhang W, Chen M, Zhou X (2018) Electrospun enzymatic hydrolysis lignin-based carbon nanofibers as binder-free supercapacitor electrodes with high performance. Polymers 10.https://doi.org/10.3390/polym10121306

  26. He G, Song Y, Chen S, Wang L (2018) Porous carbon nanofiber mats from electrospun polyacrylonitrile/polymethylmethacrylate composite nanofibers for supercapacitor electrode materials. J Mater Sci 53:9721–9730. https://doi.org/10.1007/s10853-018-2277-5

    Article  CAS  Google Scholar 

  27. Yu A, Chen Z, Maric R, Zhang L, Zhang J, Yan J (2015) Electrochemical supercapacitors for energy storage and delivery: Advanced materials, technologies and applications. Appl Energy 153:1–2. https://doi.org/10.1016/j.apenergy.2015.05.054

    Article  Google Scholar 

  28. Sharma P, Bhatti TS (2010) A review on electrochemical double-layer capacitors. Energy Convers Manage 51:2901–2912. https://doi.org/10.1016/j.enconman.2010.06.031

    Article  CAS  Google Scholar 

  29. Perez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energy Build 40:394–398. https://doi.org/10.1016/j.enbuild.2007.03.007

    Article  Google Scholar 

  30. Zhang Q, Zhang WB, Hei P, Hou Z, Yang T, Long J (2020) CoP nanoprism arrays: pseudocapacitive behavior on the electrode-electrolyte interface and electrochemical application as an anode material for supercapacitors. Appl Surf Sci 527.https://doi.org/10.1016/j.apsusc.2020.146682

  31. Davis MA, Andreas HA (2018) Identification and isolation of carbon oxidation and charge redistribution as self-discharge mechanisms in reduced graphene oxide electrochemical capacitor electrodes. Carbon 139:299–308. https://doi.org/10.1016/j.carbon.2018.06.065

    Article  CAS  Google Scholar 

  32. Wang Y, Xia Y (2013) Recent progress in supercapacitors: from materials design to system construction. Adv Mater 25:5336–5342. https://doi.org/10.1002/chin.201348249

    Article  CAS  Google Scholar 

  33. Mei Y, Yiren Z, Jingjing R, Xianlong Z, Jinping W (2015) Fabrication of high-power Li-Ion hybrid supercapacitors by enhancing the exterior surface charge storage. Adv Energy Mater 5:2416–2420. https://doi.org/10.1002/aenm.201500550

    Article  CAS  Google Scholar 

  34. Oickle AM, Tom J, Andreas HA (2016) Carbon oxidation and its influence on self-discharge in aqueous electrochemical capacitors. Carbon 110:232–242. https://doi.org/10.1016/j.carbon.2016.09.011

    Article  CAS  Google Scholar 

  35. Majurndar D, Mandal M, Bhattacharya SK (2019) V2O5 and its carbon-based nanocomposites for supercapacitor applications. Chemelectrochem 6:1623–1648. https://doi.org/10.1002/celc.201801761

    Article  CAS  Google Scholar 

  36. Chen ZX, Lu H-B (2013) Overview of graphene/polyaniline composite for high-performance supercapacitor. Chem J Chin Univ Chin 34:2020–2033. https://doi.org/10.7503/cjcu20130517

    Article  CAS  Google Scholar 

  37. Wu N, Low J, Liu T, Yu J, Cao S (2017) Hierarchical hollow cages of Mn-Co layered double hydroxide as supercapacitor electrode materials. Appl Surf Sci 413:35–40. https://doi.org/10.1016/j.apsusc.2017.03.297

    Article  CAS  Google Scholar 

  38. Li Y, Cao L, Qiao L, Zhou M, Yang Y, Xiao P, Zhang Y (2014) Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J Mater Chem A 2:6540–6548. https://doi.org/10.1039/c3ta15373h

    Article  CAS  Google Scholar 

  39. Ho K-C, Lin L-Y (2019) A review of electrode materials based on core-shell nanostructures for electrochemical supercapacitors. J Mater Chem A 7:3516–3530. https://doi.org/10.1039/c8ta11599k

    Article  CAS  Google Scholar 

  40. Lu X, Wang C, Favier F, Pinna N (2017) Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance. Adv Energy Mater 7.https://doi.org/10.1002/aenm.201601301

  41. Gu W, Yushin G (2014) Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdiscip Rev Energy Environ 3:424–473. https://doi.org/10.1002/wene.102

    Article  CAS  Google Scholar 

  42. Wu Z, Zhang X-B (2017) Design and preparation of electrode materials for supercapacitors with high specific capacitance. Acta Phys.-Chim. Sin 33:305–313. https://doi.org/10.3866/pku.whxb201611012

    Article  CAS  Google Scholar 

  43. Li XQ, Chang L, Zhao SL, Hao CL, Lu CG, Zhu YH, Tang ZY (2017) Research on carbon-based electrode materials for supercapacitors. Acta Phys Chim Sin 33:130–148. https://doi.org/10.3866/pku.whxb201609012

    Article  CAS  Google Scholar 

  44. Chen X, Paul R, Dai L (2017) Carbon-based supercapacitors for efficient energy storage. National Sci Rev 4:453–489. https://doi.org/10.1093/nsr/nwx009

    Article  CAS  Google Scholar 

  45. Kumar PS, Sundaramurthy J, Sundarrajan S, Babu VJ, Singh G, Allakhverdiev SI, Ramakrishna S (2014) Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy Environ Sci 7:3192–3222. https://doi.org/10.1039/c4ee00612g

    Article  CAS  Google Scholar 

  46. Wei Q, Xiong F, Tan S, Huang L, Lan EH, Dunn B, Mai L (2017) Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv Mater 29.https://doi.org/10.1002/adma.201602300

  47. Mahmood N, De Castro IA, Pramoda K, Khoshmanesh K, Bhargava SK, Kalantar-Zadeh K (2019) Atomically thin two-dimensional metal oxide nanosheets and their heterostructures for energy storage. Energy Storage Mater 16:455–480. https://doi.org/10.1016/j.ensm.2018.10.013

    Article  Google Scholar 

  48. Peng L, Fang Z, Zhu Y, Yan C, Yu G (2018) Holey 2D nanomaterials for electrochemical energy storage. Adv Energy Mater 8.https://doi.org/10.1002/aenm.201702179

  49. Zhang W, He Z, Han Y, Jiang Q, Zhang R (2020) Structural design and environmental applications of electrospun nanofibers. Comp Part A Appl ence Manuf 137:106009. https://doi.org/10.1016/j.compositesa.2020.106009

    Article  CAS  Google Scholar 

  50. Chen H, Wang N, Di J, Zhao Y, Song Y, Jiang L (2010) Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir 26:11291–11296. https://doi.org/10.1021/la100611f

    Article  CAS  Google Scholar 

  51. Yu H, Zhao H, Wu Y, Chen B, Sun J (2020) Electrospun ZnCo2O4/C composite nanofibers with superior electrochemical performance for supercapacitor. J Phys Chem Solids 140:109385. https://doi.org/10.1016/j.jpcs.2020.109385

    Article  CAS  Google Scholar 

  52. Yu H, Zhao H, Wu Y, Chen B, Sun J (2020) Electrospun ZnCo2O4/C composite nanofibers with superior electrochemical performance for supercapacitor. J Phy Chem Solids 14. https://doi.org/10.1016/j.jpcs.2020.109385

  53. He TS, Li XY, Wang Y, Zhang B (2020) Carbon nano-fibers/ribbons with meso /macro pores structures for supercapacitor. J Electroanal Chem. https://doi.org/10.1016/j.jelechem.2020.114597

    Article  Google Scholar 

  54. Khayyam H, Jazar RN, Nunna S, Golkarnarenji G, Badii K, Fakhrhoseini SM, Kumar S, Naebe M (2020) PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: experimental and mathematical modelling. Prog Mater Ence 107(100575):100571–100575

    Google Scholar 

  55. Yan J, Dong K, Zhang Y, Wang X, Aboalhassan AA, Yu J, Ding B (2019) Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity. Nat Commun 10. https://doi.org/10.1038/s41467-019-13430-9

  56. Li Y (2014) Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Abstr Pap Am Chem Soc 248:11–18. https://doi.org/10.1002/adma.201304756

    Article  CAS  Google Scholar 

  57. Li Y, Zhang P, Ouyang Z, Zhang M, Lin Z, Li J, Su Z, Wei G (2016) Nanoscale graphene doped with highly dispersed silver nanoparticles: quick synthesis, facile fabrication of 3D membrane-modified electrode, and super performance for electrochemical sensing. Adv Func Mater 26:2122–2134. https://doi.org/10.1002/adfm.201504533

    Article  CAS  Google Scholar 

  58. Zhang L, Ding Q, Huang Y, Gu H, Miao Y-E, Liu T (2015) Flexible hybrid membranes with Ni(OH)2 nanoplatelets vertically grown on electrospun carbon nanofibers for high-performance supercapacitors. ACS Appl Mater Interfaces 7:22669–22677. https://doi.org/10.1021/acsami.5b07528

    Article  CAS  Google Scholar 

  59. Li Y, Zhang M, Zhang X, Xie G, Su Z, Wei G (2015) Nanoporous carbon nanofibers decorated with platinum nanoparticles for non-enzymatic electrochemical sensing of H2O2. Nanomaterials 5:1891–1905. https://doi.org/10.3390/nano5041891

    Article  CAS  Google Scholar 

  60. Li Y, Zhu G, Huang H, Xu M, Lu T, Pan L (2019) A N, S dual doping strategy via electrospinning to prepare hierarchically porous carbon polyhedra embedded carbon nanofibers for flexible supercapacitors. J Mater Chem A 7:9040–9050. https://doi.org/10.1039/c8ta12246f

    Article  CAS  Google Scholar 

  61. Aboagye A, Liu Y, Ryan JG, Wei J, Zhang L (2018) Hierarchical carbon composite nanofibrous electrode material for high-performance aqueous supercapacitors. Mater Chem Phys 214:557–563. https://doi.org/10.1016/j.matchemphys.2018.05.009

    Article  CAS  Google Scholar 

  62. Nan W, Zhao Y, Ding Y, Shende AR, Fong H, Shende RV (2017) Mechanically flexible electrospun carbon nanofiber mats derived from biochar and polyacrylonitrile. Mater Lett 205:206–210. https://doi.org/10.1016/j.matlet.2017.06.092

    Article  CAS  Google Scholar 

  63. Li Z, Zhang JW, Yu LG, Zhang JW (2017) Electrospun porous nanofibers for electrochemical energy storage. J Mater Sci 52:6173–6195. https://doi.org/10.1007/s10853-017-0794-2

    Article  CAS  Google Scholar 

  64. Tan Y, Lin D, Liu C, Wang W, Kang L, Ran F (2018) Carbon nanofibers prepared by electrospinning accompanied with phase-separation method for supercapacitors: effect of thermal treatment temperature. J Mater Res 33:1120–1130. https://doi.org/10.1557/jmr.2017.373

    Article  CAS  Google Scholar 

  65. Ania CO, Khomenko V, Raymundo-Pinero E, Parra JB, Beguin F (2007) The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Adv Func Mater 17:1828–1836. https://doi.org/10.1002/adfm.200600961

    Article  CAS  Google Scholar 

  66. Liu T, Zhang F, Song Y, Li Y (2017) Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J Mater Chem A 5:33–40. https://doi.org/10.1039/C7TA05646J

    Article  Google Scholar 

  67. Abeykoon NC, Bonso JS, Ferraris JP (2015) Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/PMMA polymer blends. RSC Adv 5:19865–19873. https://doi.org/10.1039/C4RA16594B

    Article  CAS  Google Scholar 

  68. Subramanian PM (2010) Permeability barriers by controlled morphology of polymer blends (p 483–487). Polym Eng Sci 25:483–487. https://doi.org/10.1002/pen.760250810

    Article  Google Scholar 

  69. Yun SI, Kim SH, Kim DW, Kim YA, Kim BH (2019) Facile preparation and capacitive properties of low-cost carbon nanofibers with ZnO derived from lignin and pitch as supercapacitor electrodes. Carbon 149:32–43. https://doi.org/10.1016/j.carbon.2019.04.105

    Article  CAS  Google Scholar 

  70. Sharma A (2016) Free standing hollow carbon nanofiber mats for supercapacitor electrodes. RSC advances 6(82):78528–78537

    Article  Google Scholar 

  71. Moyo B, Momodu D, Fasakin O, Bello A, Dangbegnon J, Manyala N (2018) Electrochemical analysis of nanoporous carbons derived from activation of polypyrrole for stable supercapacitors. J Mater Sci 53:5229–5241. https://doi.org/10.1007/s10853-017-1911-y

    Article  CAS  Google Scholar 

  72. Bing H, Wu Y, Zhou J, Ming L, Sun S, Li X (2014) Atmospheric deposition of lead in remote high mountain of eastern Tibetan Plateau, China. Atmos Environ 99:425–435. https://doi.org/10.1016/j.atmosenv.2014.10.014

    Article  CAS  Google Scholar 

  73. Chang WM, Wang C, Chen CY (2019) Fabrication of ultra-thin carbon nanofibers by centrifuged-electrospinning for application in high-rate supercapacitors. Electrochim Acta 296:268–275. https://doi.org/10.1016/j.electacta.2018.08.048

    Article  CAS  Google Scholar 

  74. Park SH, Jung HR, Lee WJ (2013) Hollow activated carbon nanofibers prepared by electrospinning as counter electrodes for dye-sensitized solar cells. Electrochim Acta 102:423–428. https://doi.org/10.1016/j.electacta.2013.04.044

    Article  CAS  Google Scholar 

  75. Han NK, Choi YC, Park DU, Ryu JH, Jeong YG (2020) Core-shell type composites based on polyimide-derived carbon nanofibers and manganese dioxide for self-standing and binder-free supercapacitor electrode applications. Compos Sci Technol 196.https://doi.org/10.1016/j.compscitech.2020.108212

  76. He TS, Yu XD, Bai TJ, Li XY, Fu YR, Cai KD (2020) Porous carbon nanofibers derived from PAA-PVP electrospun fibers for supercapacitor. Ionics 26:4103–4111. https://doi.org/10.1007/s11581-020-03529-1

    Article  CAS  Google Scholar 

  77. He T, Ren X, Nie J, Ying J, Cai K (2015) Investigation of imbalanced activated carbon electrode supercapacitors. Int J Electrochem 2015.https://doi.org/10.1155/2015/801217

  78. He T, Su Q, Yildiz Z, Cai K, Wang Y (2016) Ultrafine carbon fibers with hollow-porous multilayered structure for supercapacitors. Electrochim Acta 222:1120–1127. https://doi.org/10.1016/j.electacta.2016.11.083

    Article  CAS  Google Scholar 

  79. Wang H, Wang W, Wang H, Jin X, Niu H, Wang H, Zhou H, Lin T (2018) High performance supercapacitor electrode materials from electrospun carbon nanofibers in situ activated by high decomposition temperature polymer. Acs Appl Energy Mater 1:431–439. https://doi.org/10.1021/acsaem.7b00083

    Article  CAS  Google Scholar 

  80. An G-H, Koo B-R, Ahn H-J (2016) Activated mesoporous carbon nanofibers fabricated using water etching-assisted templating for high-performance electrochemical capacitors. Phys Chem Chem Phys 18:6587–6594. https://doi.org/10.1039/c6cp00035e

    Article  CAS  Google Scholar 

  81. Zainab G, Babar AA, Ali N, Aboalhassan AA, Wang X, Yu J, Ding B (2020) Electrospun carbon nanofibers with multi-aperture/opening porous hierarchical structure for efficient CO2 adsorption. J Colloid Interface Sci 561:659–667. https://doi.org/10.1016/j.jcis.2019.11.041

    Article  CAS  Google Scholar 

  82. Joh H-I, Song HK, Lee C-H, Yun J-M, Jo SM, Lee S, Na S-I, Chien A-T, Kumar S (2014) Preparation of porous carbon nanofibers derived from graphene oxide/polyacrylonitrile composites as electrochemical electrode materials. Carbon 70:308–312. https://doi.org/10.1016/j.carbon.2013.12.069

    Article  CAS  Google Scholar 

  83. Huang K, Yao Y, Yang X, Chen Z, Li M (2016) Fabrication of flexible hierarchical porous nitrogen-doped carbon nanofiber films for application in binder-free supercapacitors. Mater Chem Phys 169:1–5. https://doi.org/10.1016/j.matchemphys.2015.11.024

    Article  CAS  Google Scholar 

  84. Luan Y, Nie G, Zhao X, Qiao N, Liu X, Wang H, Zhang X, Chen Y, Long YZ (2019) The integration of SnO2 dots and porous carbon nanofibers for flexible supercapacitors. Electrochim Acta 308:121–130. https://doi.org/10.1016/j.electacta.2019.03.204

    Article  CAS  Google Scholar 

  85. Yan S, Tang C, Yang Z, Wang X, Zhang H, Zhang C, Liu S (2020) Hierarchical porous electrospun carbon nanofibers with nitrogen doping as binder-free electrode for supercapacitor. J Mater Sci-Mater Electron. https://doi.org/10.1007/s10854-020-04173-1

    Article  Google Scholar 

  86. Fan Q, Ma C, Wu L, Wei C, Wang H, Song Y, Shi J (2019) Preparation of cellulose acetate derived carbon nanofibers by ZnCl2 activation as a supercapacitor electrode. RSC Adv 9:6419–6428. https://doi.org/10.1039/c8ra07587e

    Article  CAS  Google Scholar 

  87. Effendi SSW, Chiu C-Y, Chang Y-K, Ng IS (2020) Crosslinked on novel nanofibers with thermophilic carbonic anhydrase for carbon dioxide sequestration. Int J Biol Macromol 152:930–938. https://doi.org/10.1016/j.ijbiomac.2019.11.234

    Article  CAS  Google Scholar 

  88. Ma C, Cao E, Li J, Fan Q, Wu L, Song Y, Shi J (2018) Synthesis of mesoporous ribbon-shaped graphitic carbon nanofibers with superior performance as efficient supercapacitor electrodes. Electrochim Acta 292:364–373. https://doi.org/10.1016/j.electacta.2018.07.135

    Article  CAS  Google Scholar 

  89. Wu X, Hong X, Luo Z, Hui KS, Chen H, Wu J, Hui KN, Li L, Nan J, Zhang Q (2013) The effects of surface modification on the supercapacitive behaviors of novel mesoporous carbon derived from rod-like hydroxyapatite template. Electrochim Acta 89:400–406. https://doi.org/10.1016/j.electacta.2012.11.067

    Article  CAS  Google Scholar 

  90. Jiang Q, Pang X, Geng S, Zhao Y, Wang X, Qin H, Liu B, Zhou J, Zhou T (2019) Simultaneous cross-linking and pore-forming electrospun carbon nanofibers towards high capacitive performance. Appl Surf Sci 479:128–136. https://doi.org/10.1016/j.apsusc.2019.02.077

    Article  CAS  Google Scholar 

  91. Zhang L, Jiang Y, Wang L, Zhang C, Liu S (2016) Hierarchical porous carbon nanofibers as binder-free electrode for high-performance supercapacitor. Electrochim Acta 196:189–196. https://doi.org/10.1016/j.electacta.2016.02.050

    Article  CAS  Google Scholar 

  92. Fan L, Yang L, Ni X, Han J, Guo R, Zhang C (2016) Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors. Carbon 107:629–637. https://doi.org/10.1016/j.carbon.2016.06.067

    Article  CAS  Google Scholar 

  93. Wang J, Zhang X, Li Z, Ma Y, Ma L (2020) Recent progress of biomass-derived carbon materials for supercapacitors. J Power Sources 451:227794

    Article  CAS  Google Scholar 

  94. Kim CH, Yang CM, Kim YA, Yang KS (2019) Pore engineering of nanoporous carbon nanofibers toward enhanced supercapacitor performance. Appl Surf Sci 497. https://doi.org/10.1016/j.apsusc.2019.143693

  95. Perananthan S, Bonso JS, Ferraris JP (2016) Supercapacitors utilizing electrodes derived from polyacrylonitrile fibers incorporating tetramethylammonium oxalate as a porogen. Carbon 106:20–27. https://doi.org/10.1016/j.carbon.2016.04.083

    Article  CAS  Google Scholar 

  96. Abeykoon NC, Garcia V, Jayawickramage RA, Perera W, Cure J, Chabal YJ, Balkus KJ, Ferraris JP (2017) Novel binder-free electrode materials for supercapacitors utilizing high surface area carbon nanofibers derived from immiscible polymer blends of PBI/6FDA-DAM: DABA. RSC Adv 7:20947–20959. https://doi.org/10.1039/c7ra01727h

    Article  CAS  Google Scholar 

  97. Ma C, Wang R, Xie Z, Zhang H, Li Z, Shi J (2017) Preparation and molten salt-assisted KOH activation of porous carbon nanofibers for use as supercapacitor electrodes. J Porous Mat 24:1437–1445. https://doi.org/10.1007/s10934-017-0384-3

    Article  CAS  Google Scholar 

  98. Liu Y, Liu Q, Lin W, Yang X, Yang W, Zheng J, Hou H (2020) Advanced supercapacitors based on porous hollow carbon nanofiber electrodes with high specific capacitance and large energy density. ACS Appl Mater Interfaces 12:4777–4786. https://doi.org/10.1021/acsami.9b19977

    Article  CAS  Google Scholar 

  99. Hurilechaoketu WJ, Cui C, Qian W (2019) Highly electroconductive mesoporous activated carbon fibers and their performance in the ionic liquid-based electrical double-layer capacitors. Carbon 154:1–6. https://doi.org/10.1016/j.carbon.2019.07.093

    Article  CAS  Google Scholar 

  100. Park SK, Kwon SH, Lee SG, Choi MS, Suh DH, Nakhanivej P, Lee H, Park HS (2018) 105 Cyclable Pseudocapacitive Na-Ion storage of hierarchically structured phosphorus-incorporating nanoporous carbons in organic electrolytes. Acs Energy Letters: acsenergylett.8b00068

  101. Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A (2003) Understanding chemical reactions between carbons and NaOH and KOH An insight into the chemical activation mechanism. Carbon 41:267–275. https://doi.org/10.1016/s0008-6223(02)00279-8

    Article  CAS  Google Scholar 

  102. Raymundo-Pinero E, Azais P, Cacciaguerra T, Cazorla-Amoros D, Linares-Solano A, Beguin F (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43:786–795. https://doi.org/10.1016/j.carbon.2004.11.005

    Article  CAS  Google Scholar 

  103. Yoon SH, Lim S, Song Y, Ota Y, Qiao WM, Tanaka A, Mochida I (2004) KOH activation of carbon nanofibers. Carbon 42:1723–1729. https://doi.org/10.1016/j.carbon.2004.03.006

    Article  CAS  Google Scholar 

  104. Ma C, Li Y, Shi J, Song Y, Liu L (2014) High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching. Chem Eng J 249:216–225. https://doi.org/10.1016/j.cej.2014.03.083

    Article  CAS  Google Scholar 

  105. Azargohar R, Dalai AK (2008) Steam and KOH activation of biochar: experimental and modeling studies. Microporous Mesoporous Mater 110:413–421. https://doi.org/10.1016/j.micromeso.2007.06.047

    Article  CAS  Google Scholar 

  106. Qin L (2009) Preparation of biomass activated carbon by steam activation. J Southeast Univ 39:1008–1011

    Google Scholar 

  107. Kim C, Yang KS (2003) Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett 83:1216–1218. https://doi.org/10.1063/1.1599963

    Article  CAS  Google Scholar 

  108. Kim C (2005) Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors. J Power Sources 142:382–388. https://doi.org/10.1016/j.jpowsour.2004.11.013

    Article  CAS  Google Scholar 

  109. Kim C, Choi YO, Lee WJ, Yang KS (2004) Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions. Electrochim Acta 50:883–887. https://doi.org/10.1016/j.electacta.2004.02.072

    Article  CAS  Google Scholar 

  110. Wang G, Pan C, Wang L, Dong Q, Yu C, Zhao Z, Qiu J (2012) Activated carbon nanofiber webs made by electrospinning for capacitive deionization. Electrochim Acta 69:65–70. https://doi.org/10.1016/j.electacta.2012.02.066

    Article  CAS  Google Scholar 

  111. Qian L, Guo F, Jia X, Zhan Y, Tao C (2020) Recent development in the synthesis of agricultural and forestry biomass-derived porous carbons for supercapacitor applications: a review. Ionics. https://doi.org/10.1007/s11581-020-03626-1

    Article  Google Scholar 

  112. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. https://doi.org/10.1039/c3ee43525c

    Article  Google Scholar 

  113. Shi G, Liu C, Wang G, Chen X, Li L, Jiang X, Zhang P, Dong Y, Jia S (2019) Preparation and electrochemical performance of electrospun biomass-based activated carbon nanofibers. Ionics 25:1805–1812. https://doi.org/10.1007/s11581-018-2675-3

    Article  CAS  Google Scholar 

  114. Qiu SL, Wang CS, Wang YT, Liu CG, Chen XY, Xie HF, Huang YA, Cheng RS (2011) Effects of graphene oxides on the cure behaviors of a tetrafunctional epoxy resin. Express Polymer Letters 5:809–818. https://doi.org/10.3144/expresspolymlett.2011.79

    Article  CAS  Google Scholar 

  115. Yan J, Choi JH, Jeong YG (2018) Freestanding supercapacitor electrode applications of carbon nanofibers based on polyacrylonitrile and polyhedral oligomeric silsesquioxane. Mater Des 139:72–80. https://doi.org/10.1016/j.matdes.2017.10.071

    Article  CAS  Google Scholar 

  116. Qian W, Li X, Zhu X, Hu Z, Zhang X, Luo G, Yao H (2020) Preparation of activated carbon nanofibers using degradative solvent extraction products obtained from low-rank coal and their utilization in supercapacitors. RSC Adv 10: 8172–8180. https://doi.org/10.1039/c9ra09966b

  117. Jayawickramage RAP, Balkus KJ, Jr., Ferraris JP (2019) Binder free carbon nanofiber electrodes derived from polyacrylonitrile-lignin blends for high performance supercapacitors. Nanotechnology 30.https://doi.org/10.1088/1361-6528/ab2274

  118. Dou Q, Park HS (2020) Perspective on high-energy carbon-based supercapacitors. Energy Environ Mater. https://doi.org/10.1002/eem2.12102

    Article  Google Scholar 

  119. Yang T, Li R, Long X, Li Z, Gu Z, Liu J (2016) Nitrogen and sulphur-functionalized multiple graphene aerogel for supercapacitors with excellent electrochemical performance. Electrochimica Acta 187: 143–152. https://doi.org/10.1016/j.electacta.2015.11.043

  120. Su F, Poh CK, Chen JS, Xu G, Wang D, Li Q, Lin J, Lou XW (2011) Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ Sci 4: 717–724. https://doi.org/10.1039/c0ee00277a

  121. Sun H, Li S, Shen Y, Miao F, Zhang P, Shao G (2020) Integrated structural design of polyaniline-modified nitrogen-doped hierarchical porous carbon nanofibers as binder-free electrodes toward all-solid-state flexible supercapacitors. Appl Surf Sci 501.https://doi.org/10.1016/j.apsusc.2019.144001

  122. Bichat MP, Raymundo-Pinero E, Beguin F (2010) High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 48: 4351–4361.https://doi.org/10.1016/j.carbon.2010.07.049

  123. Ismagilov ZR, Shalagina AE, Podyacheva OY, Anikeeva OB, Buryakov TI, Tkachev EN (2009) Structure and electrical conductivity of nitrogen-doped carbon nanofibers. Carbon 47: 1922-1929. https://doi.org/10.1016/j.carbon.2009.02.034

  124. Liu Y, Zhang Z, Fang Y, Liu B, Huang J, Miao F, Bao Y, Dong B (2019) IR-Driven strong plasmonic-coupling on Ag nanorices/W18O49 nanowires heterostructures for photo/thermal synergistic enhancement of H2 evolution from ammonia borane. Appl Catal B-Environ 252: 164–173. https://doi.org/10.1016/j.apcatb.2019.04.035

  125. Cheng Y, Huang L, Xiao X, Yao B, Yuan L, Li T, Hu Z, Wang B, Wan J, Zhou J (2015) Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 15: 66–74.https://doi.org/10.1016/j.nanoen.2015.04.007

  126. Seredych M, Idrobo JC, Bandosz TJ (2013) Effect of confined space reduction of graphite oxide followed by sulfur doping on oxygen reduction reaction in neutral electrolyte. J Mater Chem A 1: 7059–7067.https://doi.org/10.1039/c3ta10995j

  127. Wang C, Qiu F, Deng H, Zhang X, He P, Zhou H (2017) Study on the aqueous hybrid supercapacitor based on carbon-coated NaTi2(PO4)3 and activated carbon electrode materials. Acta Chimica Sinica 75: 241–246.https://doi.org/10.6023/a16100523

  128. Xin G, Wang Y, Jia S, Tian P, Zhou S, Zang J (2017) Synthesis of nitrogen-doped mesoporous carbon from polyaniline with an F127 template for high-performance supercapacitors. Appl Surf Sci 422: 654–660.https://doi.org/10.1016/j.apsusc.2017.06.084

  129. Lin T, Chen I W, Liu F, Yang C, Bi H, Xu F, Huang F (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350: 1508–1513.https://doi.org/10.1126/science.aab3798

  130. Na W, Jun J, Park JW, Lee G, Jang J (2017) Highly porous carbon nanofibers co-doped with fluorine and nitrogen for outstanding supercapacitor performance. J Mater Chem A 5: 17379–17387.https://doi.org/10.1039/c7ta04406b

  131. Yan R, Antonietti M, Oschatz M (2018) Toward the experimental understanding of the energy storage mechanism and ion dynamics in ionic liquid based supercapacitors. Adv Energy Mater 8: 1800026.https://doi.org/10.1002/aenm.201800026

  132. Chen LF, Lu Y, Yu L, Lou XW (2017) Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ Sci

  133. Li J, Han K, Wang D, Teng Z, Cao Y, Qi J, Li M, Wang M (2020) Fabrication of high performance structural N-doped hierarchical porous carbon for supercapacitor. Carbon 164: 42–50.https://doi.org/10.1016/j.carbon.2020.03.044

  134. Bai Y, Huang ZH, Kong F (2014) Electrospun preparation of microporous carbon ultrafine fibers with tuned diameter, pore structure and hydrophobicity from phenolic resin. Carbon 66: 705–712.https://doi.org/10.1016/j.carbon.2013.09.074

  135. Shen C, Sun Y, Yao W, Lu Y.(2014) Facile synthesis of polypyrrole nanospheres and their carbonized products for potential application in high-performance supercapacitors. Polymer 55: 2817–2824.https://doi.org/10.1016/j.polymer.2014.04.042

  136. Xiao Y, Sun P, Cao M (2014) Core-shell bimetallic carbide nanoparticles confined in a three-dimensional N-Doped carbon conductive network for efficient lithium storage. Acs Nano 8: 7846–7857.https://doi.org/10.1021/nn501390j

  137. Bianco GV, Losurdo M, Giangregorio MM, Capezzuto P, Bruno G (2014) Exploring and rationalising effective n-doping of large area CVD-graphene by NH3. Phys Chem Chem Phys 16: 3632–3639.https://doi.org/10.1039/c3cp54451f

  138. Jiang Q, Liu M, Shao C, Li X, Liu H, Li X, Liu Y (2020) Nitrogen doping polyvinylpyrrolidone-based carbon nanofibers via pyrolysis of g-C3N4 with tunable chemical states and capacitive energy storage. Electrochimica Acta 330.https://doi.org/10.1016/j.electacta.2019.135212

  139. Nie G, Zhu Y, Tian D, Wang C (2018) Research progress in the electrospun nanofiber: based supercapacitor electrode materials. Chem J Chin Univ Chin 39: 1349–1363. https://doi.org/10.7503/cjcu20180195

  140. Yan S, Tang C, Zhang H, Yang Z, Wang X, Zhang C, Liu S (2020) Free-standing cross-linked activated carbon nanofibers with nitrogen functionality for high-performance supercapacitors. Nanotechnology 31. https://doi.org/10.1088/1361-6528/ab4536

  141. Mofokeng TP, Tetana ZN, Ozoemena KI (2020) Defective 3D nitrogen-doped carbon nanotube-carbon fibre networks for high-performance supercapacitor: Transformative role of nitrogen-doping from surface-confined to diffusive kinetics. Carbon 169: 312–326. https://doi.org/10.1016/j.carbon.2020.07.049

  142. Li X, Zhao Y, Bai Y, Zhao X, Wang R, Huang Y, Liang Q, Huang Z (2017) A non-woven network of porous nitrogen-doping carbon nanofibers as a binder-free electrode for supercapacitors. Electrochimica Acta 230: 445–453. https://doi.org/10.1016/j.electacta.2017.02.030

  143. Xu Q, Yu X, Liang Q, Bai Y, Huang ZH, Kang F (2015) Nitrogen-doped hollow activated carbon nanofibers as high performance supercapacitor electrodes. J Electroanal Chem 739: 84–88.https://doi.org/10.1016/j.jelechem.2014.12.027

  144. Zhao L, Qiu Y, Yu J, Deng X, Dai C, Bai X (2013) Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density. Nanoscale 5: 4902–4909. https://doi.org/10.1039/c3nr33927k

  145. Hosseini SR, Ghasemi S, Vandat Y (2018) The effect of electro-polymerization method on supercapacitive properties of poly (O-Anisidine)/CNT nanocomposites. Synth Met 246: 16–22.https://doi.org/10.1016/j.synthmet.2018.09.017

  146. Lai C, Zhou Z, Zhang L, Wang X, Zhou Q, Zhao Y, Wang Y, Wu XF, Zhu Z, Fong H (2014) Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors. J Power Sources 247: 134–141. https://doi.org/10.1016/j.jpowsour.2013.08.082

  147. Yang X, Xiang C, Zou Y, Liang J, Zhang H, Yan E, Xu F, Hu X, Cheng Q, Sun L (2020) Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes. J Mater Sci Tech 55: 223–230. https://doi.org/10.1016/j.jmst.2020.03.026

  148. Zhu J, Dong Y, Zhang S, Fan Z 2020) Application of Carbon-/Graphene quantum dots for supercapacitors. Acta Phys Chim Sin 36. https://doi.org/10.3866/pku.whxb201903052

  149. Kim BH, Yang KS (2014) Structure and electrochemical properties of electrospun carbon fiber composites containing graphene. J Indust Eng Chem 20: 3474–3479. https://doi.org/10.1016/j.jiec.2013.12.037

  150. Dai Z, Ren PG, An YL, Zhang H, Ren F, Zhang Q (2019) Nitrogen-sulphur Co-doped graphenes modified electrospun lignin/polyacrylonitrile-based carbon nanofiber as high performance supercapacitor. J Power Sourc 437.https://doi.org/10.1016/j.jpowsour.2019.226937

  151. Shi HTH, Jang S, Ugalde AR, Naguib HE (2020) Hierarchically structured nitrogen-doped multi-layer reduced graphene oxide for flexible intercalated supercapacitor electrodes. ACS Appl Energy Mater 3: 987–997

  152. Zhou Z, Wu XF (2013) Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: synthesis and electrochemical characterization. J Power Sourc 222: 410–416.https://doi.org/10.1016/j.jpowsour.2012.09.004

  153. He Y, Wang L, Jia D (2016) Coal/PAN interconnected carbon nanofibers with excellent energy storage performance and electrical conductivity. Electrochimica Acta 194: 239–245.https://doi.org/10.1016/j.electacta.2016.01.191

  154. Chen S, He S, Hou H (2013) Electrospinning technology for applications in supercapacitors. Current Organic Chem 17: 1402–1410.https://doi.org/10.2174/1385272811317130007

  155. Yang J, Lian L, Ruan H, Xie F, Wei M (2014) Nanostructured porous MnO2 on Ni foam substrate with a high mass loading via a CV electrodeposition route for supercapacitor application. Electrochimica Acta 136: 189–194. https://doi.org/10.1016/j.electacta.2014.05.074

  156. Dubal DP, Gomez-Romero P, Sankapal BR, Holze R (2015) Nickel cobaltite as an emerging material for supercapacitors: an overview. Nano Energy 11: 377–399. https://doi.org/10.1016/j.nanoen.2014.11.013

  157. Zhao J, Tian Y, Liu A, Song L, Zhao Z (2019) The NiO electrode materials in electrochemical capacitor: A review. Mater Sci Semicond Process 96: 78–90. https://doi.org/10.1016/j.mssp.2019.02.024

  158. Blachowicz T, Ehrmann A (2020) Recent developments in electrospun ZnO nanofibers: a short review. J Eng Fiber Fabr 15.https://doi.org/10.1177/1558925019899682

  159. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24: 5166–5180. https://doi.org/10.1002/adma.201202146

  160. Wu Z, Li L, Yan JM, Zhang XB (2017) Materials design and system construction for conventional and new-concept supercapacitors. Adv Sci 4.https://doi.org/10.1002/advs.201600382

  161. Sun X, Xu T, Bai J, Li C (2019) MnO2 nanosheets grown on multichannel carbon nanofibers containing amorphous cobalt oxide as a flexible electrode for supercapacitors. Acs Appl Energy Mater 2: 8675–8684. https://doi.org/10.1021/acsaem.9b01650

  162. Hosseini MG, Shahryari E (2019) Anchoring RuO2 nanoparticles on reduced graphene oxide-multi-walled carbon nanotubes as a high-performance supercapacitor. Ionics 25: 2383–2391.https://doi.org/10.1007/s11581-018-2668-2

  163. Tolosa A, Fleischmann S, Grobelsek I, Presser V (2018) Electrospun hybrid vanadium oxide/carbon fiber mats for lithium and sodium-ion battery electrodes. Acs Appl Energy Mater 1: 3790–3801.https://doi.org/10.1021/acsaem.8b00572

  164. Mukhiya T, Dahal B, Ojha GP, Chhetri K, Lee M, Kim T, Chae SH, Tiwari AP, Muthurasu A, Kim HY (2019) Silver nanoparticles entrapped cobalt oxide nanohairs/electrospun carbon nanofibers nanocomposite in apt architecture for high performance supercapacitors. Compos Pt B-Eng 178.https://doi.org/10.1016/j.compositesb.2019.107482

  165. Sun J, Wang W, Yu D (2019) NiCo2O4 Nanosheet-decorated carbon nanofiber electrodes with high electrochemical performance for flexible supercapacitors. J Electron Mater 48: 3833–3843.https://doi.org/10.1007/s11664-019-07135-4

  166. Kim BH, Kim CH, Lee DG (2016) Mesopore-enriched activated carbon nanofiber web containing RuO2 as electrode material for high-performance supercapacitors. J Electroanal Chem 760: 64–70.https://doi.org/10.1016/j.jelechem.2015.12.001

  167. Jun YR, Kim BH (2016) Effects of heat treatment on the hierarchical porous structure and electro-capacitive properties of RuO2/activated carbon nanofiber composites. Bulletin Korean Chem Soc 37: 1820–1826https://doi.org/10.1002/bkcs.10981

  168. An GH, Ahn HJ (2015)Surface modification of RuO2 nanoparticles-carbon nanofiber composites for electrochemical capacitors. J Electroanal Chem 744: 32–36. https://doi.org/10.1016/j.jelechem.2015.03.009

  169. Choudhury A, Kim JH, Yang KS, Yang DJ (2016) Facile synthesis of self-standing binder-free vanadium pentoxide-carbon nanofiber composites for high-performance supercapacitors. Electrochimica Acta 400–407

  170. Li L, Peng S, Wu HB, Yu L, Madhavi S, Lou XW (2015) A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers. Adv Energy Mater 5. https://doi.org/10.1002/aenm.201500753

  171. Jeong JH, Kim BH (2018) Synergistic effects of pitch and poly(methyl methacrylate) on the morphological and capacitive properties of MnO2/carbon nanofiber composites. J Electroanal Chem 809: 130–135. https://doi.org/10.1016/j.jelechem.2017.12.063

  172. Lee DG, Kim JH, Kim BH (2016) Hierarchical porous MnO2/carbon nanofiber composites with hollow cores for high-performance supercapacitor electrodes: effect of poly(methyl methacrylate) concentration. Electrochimica Acta 200: 174–181.https://doi.org/10.1016/j.electacta.2016.03.095

  173. Kim SG, Jun J, Kim YK, Kim J, Lee JS, Jang J (2020) Facile synthesis of CO3O4-incorporated multichannel carbon nanofibers for electrochemical applications. ACS Appl Mater Interfaces 12: 20613–20622.https://doi.org/10.1021/acsami.0c06254

  174. Wang T, Chen HC, Yu F, Zhao XS, Wang H (2019) Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater 16: 545–573. https://doi.org/10.1016/j.ensm.2018.09.007

  175. Abouali S, Garakani MA, Zhang B, Xu ZL, Heidari EK, Huang JQ, Huang J, Kim JK (2015) Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors. ACS Appl Mater Interfaces 7: 13503–13511.https://doi.org/10.1021/acsami.5b02787

  176. Lu Y, Liu Y, Mo J, Deng B, Wang J, Zhu Y, Xiao X, Xu G (2021) Construction of hierarchical structure of Co3O4 electrode based on electrospinning technique for supercapacitor. J Alloys Compd 853.https://doi.org/10.1016/j.jallcom.2020.157271

  177. Huang YP, Cui F, Zhao Y, Lian JB, Bao J, Li H M (2018) Controlled growth of ultrathin NiMoO4 nanosheets on carbon nanofiber membrane as advanced electrodes for asymmetric supercapacitors. J Alloy Compd 753: 176–185. https://doi.org/10.1016/j.jallcom.2018.04.060

  178. Tian D, Lu XF, Nie GD, Gao M, Wang C (2018) Direct growth of Ni–Mn–O nanosheets on flexible electrospun carbon nanofibers for high performance supercapacitor applications. Inorg Chem Front 5: 635–642.https://doi.org/10.1039/c7qi00696a

  179. Fan C, Ying ZR, Zhang WW, Ju T, Li B (2018) NiCo2O4 grown on Co/C hybrid nanofiber film with excellent electrochemical performance for flexible supercapacitor electrodes. J Mater Sci Mater Electron 29: 6909–6915.https://doi.org/10.1007/s10854-018-8677-0

  180. Al-Rubaye S, Rajagopalan R, Dou SX, Cheng ZX (2017) Facile synthesis of a reduced graphene oxide wrapped porous NiCo2O4 composite with superior performance as an electrode material for supercapacitors. J Mater Chem A 5: 18989–18997.https://doi.org/10.1039/c7ta03251j

  181. Hsu YK, Chen YC, Lin YG, Chen LC, Chen KH (2011) Reversible phase transformation of MnO2 nanosheets in an electrochemical capacitor investigated by in situ Raman spectroscopy. Chem Commun 47: 1252–1254.https://doi.org/10.1039/c0cc03902k

  182. Yuan YF, Nie AM, Odegard GM, Xu R, Zhou DH, Santhanagopalan S, He K, Asayesh-Ardakani H, Meng DD, Klie RF, Johnson C, Lu J, Shahbazian-Yassar R (2015) Asynchronous crystal cell expansion during lithiation of K+ stabilized alpha-MnO2. Nano Lett 15: 2998–3007. https://doi.org/10.1021/nl5048913

  183. Athouel L, Moser F, Dugas R, Crosnier O, Belanger D, Brousse T (2008) Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte. J Phys Chem C 112: 7270–7277.https://doi.org/10.1021/j0773029

  184. Guo W, Yu C, Li S, Wang Z, Yu J, Huang H, Qiu J (2019) Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: challenges and perspectives. Nano Energy 57: 459–472.https://doi.org/10.1016/j.nanoen.2018.12.015

  185. McNeill R, Weiss DE, Wardlaw JH, Siudak R (1963) Electronic conduction in polymers chemical structure of polypyrrole. Aus J Chem 16: 1056. https://doi.org/10.1071/ch9631056

  186. Sivakkumar SR, Saraswathi R (2004) Performance evaluation of poly(N-methylaniline) and polyisothianaphthene in charge-storage devices. J Power Sour 137: 322–328. https://doi.org/10.1016/j.jpowsour.2004.05.060

  187. Lu C, Chen X (2019) Electrospun polyaniline nanofiber networks toward high-performance flexible supercapacitors. Adv Mater Technol 4. https://doi.org/10.1002/admt.201900564

  188. Abdah MA, Edris NM, Kulandaivalu S, Rahman N A, Sulaiman Y (2018) Supercapacitor with superior electrochemical properties derived from symmetrical manganese oxide-carbon fiber coated with polypyrrole. Int J Hydrog Energy 43: 17328–17337.https://doi.org/10.1016/j.ijhydene.2018.07.093

  189. Ibanez-Marin F, Morales-Verdejo C, Camarada M B (2017) Composites of electrochemically reduced graphene oxide and polythiophene and their application in supercapacitors. Int J Electrochem Sci 12: 11546–11555. https://doi.org/10.20964/2017.12.54

  190. Tian D, Lu X, Nie G, Gao M, Song N, Wang C (2018) Growth of polyaniline thorns on hybrid electrospun CNFs with nickel nanoparticles and graphene nanosheets as binder-free electrodes for high-performance supercapacitors. Appl Surf Sci 458: 389–396.https://doi.org/10.1016/j.apsusc.2018.07.103

  191. Jalil NA, Abdah MAAM, Azman NHN, Sulaiman Y (2020) Polyaniline and manganese oxide decorated on carbon nanofibers as a superior electrode material for supercapacitor. J Electroanal Chem 867.https://doi.org/10.1016/j.jelechem.2020.114188

  192. Mao X, Hatton TA, Rutledge GC (2013) A review of electrospun carbon fibers as electrode materials for energy storage. Current Organ Chem 17: 1390–1401. https://doi.org/10.2174/1385272811317130006

  193. Li X, Tian X, Yang T, He Y, Liu W, Song Y, Liu Z.(2019)Coal Liquefaction Residues Based Carbon Nanofibers Film Prepared by Electrospinning: An Effective Approach to Coal Waste Management. ACS Sustain Chem Eng 7: 5742.https://doi.org/10.1021/acssuschemeng.8b05210

  194. Agyemang FO, Tomboc GM, Kwofie S, Kim H (2018) Electrospun carbon nanofiber-carbon nanotubes coated polyaniline composites with improved electrochemical properties for supercapacitors. Electrochimica Acta 259: 1110–1119. https://doi.org/10.1016/j.electacta.2017.12.079

  195. Simotwo SK, Kalra V (2018) Polyaniline-carbon based binder-free asymmetric supercapacitor in neutral aqueous electrolyte. Electrochimica Acta: 131–138. https://doi.org/10.1016/j.electacta.2018.01.157

  196. Tao R, Ning H, Fang Z, Chen J, Cai W, Zhou Y, Zhu Z, Yao R, Peng J (2017) Homogeneous surface profiles of inkjet-printed silver nanoparticle films by regulating their drying microenvironment. J Phy Chem C 121: 8992–8998. https://doi.org/10.1021/acs.jpcc.6b12793

  197. Kim M, Lee C, Jang J (2014) Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity. Adv Func Mater. https://doi.org/10.1002/adfm.201303282

  198. Yang C, Shen J, Wang C, Fei H, Bao H, Wang G (2014) All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes. J Mater Chem A 2: 1458–1464.https://doi.org/10.1039/c3ta13953k

  199. Chen L, Li D, Chen L, Si P, Feng J, Zhang L, Li Y, Lou J, Ci L (2018) Core-shell structured carbon nanofibers yarn@polypyrrole@graphene for high performance all-solid-state fiber supercapacitors. Carbon 138: 264–270.https://doi.org/10.1016/j.carbon.2018.06.022

  200. Gong X, Yang J, Jiang Y, Mu S (2014) Application of Electrospinning technique in power Lithium-Ion batteries. Prog Chem 26: 41–47. https://doi.org/10.7536/pc130641

  201. Liu Y, Zhan L, Zhang R, Qiao WM, Liang XY, Ling LC (2007) Preparation of mesophase pitch based mesoporous carbons using an imprinting method. New Carbon Mater 22: 259–263. https://doi.org/10.1016/s1872-5805(07)60021-3

  202. Cai M, Yuan D, Zhang X, Pu Y, Liu X, He H, Zhang L, Ning X (2020) Lithium ion battery separator with improved performance via side-by-side bicomponent electrospinning of PVDF-HFP/PI followed by 3D thermal crosslinking. J Power Sources 461.https://doi.org/10.1016/j.jpowsour.2020.228123

  203. Mahant YP, Kondawar SB, Nandanwar DV, Koinkar P (2018) Poly(methyl methacrylate) reinforced poly(vinylidene fluoride) composites electrospun nanofibrous polymer electrolytes as potential separator for lithium ion batteries. Mater Renew Sustain Energy. https://doi.org/10.1007/s40243-018-0115-y

  204. Shi C, Zhang P, Huang S, He X, Yang P, Wu D, Sun D, Zhao J (2015) Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries. J Power Sources 298: 158–165. https://doi.org/10.1016/j.jpowsour.2015.08.008

  205. Xin Y, Zhu J, Sun H, Xu Y, Liu T, Qian C (2018) A brief review on piezoelectric PVDF nanofibers prepared by electrospinning. Ferroelectrics 526: 140–151.https://doi.org/10.1080/00150193.2018.1456304

  206. Peng H, Xiao L, Sun K, Ma G, Wei G, Lei Z. (2019) Preparation of a cheap and environmentally friendly separator by coaxial electrospinning toward suppressing self-discharge of supercapacitors. J Power Sources 435. https://doi.org/10.1016/j.jpowsour.2019.226800

Download references

Acknowledgements

The supports of the Project of Liaoning Province, China (No. 0518XN011, 0519BS014), the National Key R&D programs of China (No. 2020YFF0413818), the National Natural Science Foundation of China (No. 21671025, 21471021), Innovation and Entrepreneurship Training Project of Liaoning Province, China (No. 202010167019, S202010167045, S202010167046) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie-Shi He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XY., Yan, Y., Zhang, B. et al. PAN-derived electrospun nanofibers for supercapacitor applications: ongoing approaches and challenges. J Mater Sci 56, 10745–10781 (2021). https://doi.org/10.1007/s10853-021-05939-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05939-6

Navigation