Skip to main content

Advertisement

Log in

Recent development in the synthesis of agricultural and forestry biomass-derived porous carbons for supercapacitor applications: a review

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Carbon electrode materials from agricultural and forestry biomass have drawn great research attention for supercapacitor applications based on their renewable nature, intrinsic porous structures, widespread availability, and environmental friendliness. In recent years, various promising methods have been applied to the synthesis and structural design of biomass-derived porous carbons (BDPCs), and significant breakthroughs have been made. In this work, we try to review the current research on the synthesis methods of BDPC-based electrode materials by comprehensively and systematically summarizing recent advances in the synthesis methods. The main activation methods for BDPCs and the promising modification methods for the improvement of their electrochemical performance, including heteroatom doping and incorporation of metal compounds, are summarized and discussed. Perspectives regarding the promising research directions and challenges on the further development of electrode materials from biomass materials are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Merlet C, Rotenberg B, Madden PA, Taberna P-L, Simon P, Gogotsi Y, Salanne M (2012) On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat Mater 11(4):306–310. https://doi.org/10.1038/nmat3260

    Article  CAS  PubMed  Google Scholar 

  2. Guo FQ, Li XL, Liu Y, Peng KY, Guo CL, Rao ZH (2018) Catalytic cracking of biomass pyrolysis tar over char-supported catalysts. Energ Convers Manage 167:81–90. https://doi.org/10.1016/j.enconman.2018.04.094

    Article  CAS  Google Scholar 

  3. Lyu L, K-d S, Ko D, Choi J, Lee C, Hwang T, Cho Y, Jin X, Zhang W, Pang H (2019) Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Mater Chem Front 3(12):2543–2570. https://doi.org/10.1039/c9qm00348g

    Article  CAS  Google Scholar 

  4. Zhao G, Chen C, Yu D, Sun L, Yang C, Zhang H, Sun Y, Besenbacher F, Yu M (2018) One-step production of ONS co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 47:547–555. https://doi.org/10.1016/j.nanoen.2018.03.016

    Article  CAS  Google Scholar 

  5. Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950. https://doi.org/10.1039/c5cs00580a

    Article  CAS  PubMed  Google Scholar 

  6. Bi Z, Kong Q, Cao Y, Sun G, Su F, Wei X, Li X, Ahmad A, Xie L, Chen C-M (2019) Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J Mater Chem A 7(27):16028–16045. https://doi.org/10.1039/c9ta04436a

    Article  CAS  Google Scholar 

  7. Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J (2017) Asymmetric supercapacitor electrodes and devices. Adv Mater 29(21). https://doi.org/10.1002/adma.201605336

  8. Jin H, Li J, Yuan Y, Wang J, Lu J, Wang S (2018) Recent progress in biomass-derived electrode materials for high volumetric performance supercapacitors. Adv Energy Mater 8(23):1801007. https://doi.org/10.1002/aenm.201801007

    Article  CAS  Google Scholar 

  9. Kang X, Zhu H, Wang C, Sun K, Yin J (2018) Biomass derived hierarchically porous and heteroatom-doped carbons for supercapacitors. J Colloid Interface Sci 509:369–383. https://doi.org/10.1016/j.jcis.2017.09.013

    Article  CAS  PubMed  Google Scholar 

  10. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7(4):1250–1280. https://doi.org/10.1039/c3ee43525c

    Article  CAS  Google Scholar 

  11. Garg R, Elmas S, Nann T, Andersson MR (2017) Deposition methods of graphene as electrode material for organic solar cells. Adv Energy Mater 7(10):1601393. https://doi.org/10.1002/aenm.201601393

    Article  CAS  Google Scholar 

  12. Guo F, Jia X, Liang S, Zhou N, Chen P, Ruan R (2019) Development of biochar-based nanocatalysts for tar cracking/reforming during biomass pyrolysis and gasification. Bioresour Technol 298:122263. https://doi.org/10.1016/j.biortech.2019.122263

    Article  CAS  PubMed  Google Scholar 

  13. Guo F, Peng K, Liang S, Jia X, Jiang X, Qian L (2019) Evaluation of the catalytic performance of different activated biochar catalysts for removal of tar from biomass pyrolysis. Fuel 258:116204. https://doi.org/10.1016/j.fuel.2019.116204

    Article  CAS  Google Scholar 

  14. Zhang XQ, Zhong Y, Xia XH, Xia Y, Wang DH, Zhou CA, Tang WJ, Wang XL, Wu JB, Tu JP (2018) Metal-embedded porous graphitic carbon fibers fabricated from bamboo sticks as a novel cathode for lithium–sulfur batteries. ACS Appl Mater Interfaces 10(16):13598–13605. https://doi.org/10.1021/acsami.8b02504

    Article  CAS  PubMed  Google Scholar 

  15. Yazdani MR, Duimovich N, Tiraferri A, Laurell P, Borghei M, Zimmerman JB, Vahala R (2019) Tailored mesoporous biochar sorbents from pinecone biomass for the adsorption of natural organic matter from lake water. J Mol Liq 291:111248. https://doi.org/10.1016/j.molliq.2019.111248

    Article  CAS  Google Scholar 

  16. Zhu L, Jiang H, Yang Q, Yao S, Shen X, Tu F (2019) An effective porous activated carbon derived from puffed corn employed as the separator coating in a lithium–sulfur battery. Energy Technol 7(11):1900752. https://doi.org/10.1002/ente.201900752

    Article  CAS  Google Scholar 

  17. Liu W, Jiang H, Yu H (2019) Emerging applications of biochar-based materials for energy storage and conversion. Energy Environ Sci 12(6):1751–1779. https://doi.org/10.1039/c9ee00206e

    Article  CAS  Google Scholar 

  18. Chen Q, Tan X, Liu Y, Liu S, Li M, Gu Y, Zhang P, Ye S, Yang Z, Yang Y (2020) Biomass-derived porous graphitic carbon materials for energy and environmental applications. J Mater Chem A 8(12):5773–5811. https://doi.org/10.1039/C9TA11618D

    Article  CAS  Google Scholar 

  19. Kang D, Liu Q, Gu J, Su Y, Zhang W, Zhang D (2015) “Egg-box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors. ACS Nano 9(11):11225–11233. https://doi.org/10.1021/acsnano.5b04821

    Article  CAS  PubMed  Google Scholar 

  20. Liu WJ, Tian K, Ling LL, Yu HQ, Jiang H (2016) Use of nutrient rich hydrophytes to create N, P-dually doped porous carbon with robust energy storage performance. Environ Sci Technol 50(22):12421–12428. https://doi.org/10.1021/acs.est.6b03051

    Article  CAS  PubMed  Google Scholar 

  21. Abioye AM, Ani FN (2015) Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew Sust Energ Rev 52:1282–1293. https://doi.org/10.1016/j.rser.2015.07.129

    Article  CAS  Google Scholar 

  22. Deng Y, Xie Y, Zou K, Ji X (2016) Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A 4(4):1144–1173. https://doi.org/10.1039/c5ta08620e

    Article  CAS  Google Scholar 

  23. Luo W, Schardt J, Bommier C, Wang B, Razink J, Simonsen J, Ji XL (2013) Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J Mater Chem A 1(36):10662–10666. https://doi.org/10.1039/c3ta12389h

    Article  CAS  Google Scholar 

  24. Lu H, Zhao X (2017) Biomass-derived carbon electrode materials for supercapacitors. J Colloid Interface Sci 1(6):1265–1281. https://doi.org/10.1039/c7se00099e

    Article  CAS  Google Scholar 

  25. Wang Z, Shen D, Wu C, Gu S (2018) State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chem 20(22):5031–5057. https://doi.org/10.1039/c8gc01748d

    Article  CAS  Google Scholar 

  26. Xia C, Shi SQ (2016) Self-activation for activated carbon from biomass: theory and parameters. Green Chem 18(7):2063–2071. https://doi.org/10.1039/c5gc02152a

    Article  CAS  Google Scholar 

  27. Bommier C, Xu R, Wang W, Wang X, Wen D, Lu J, Ji X (2015) Self-activation of cellulose: a new preparation methodology for activated carbon electrodes in electrochemical capacitors. Nano Energy 13:709–717. https://doi.org/10.1016/j.nanoen.2015.03.022

    Article  CAS  Google Scholar 

  28. Kleszyk P, Ratajczak P, Skowron P, Jagiello J, Abbas Q, Frąckowiak E, Béguin F (2015) Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors. Carbon 81:148–157. https://doi.org/10.1016/j.carbon.2014.09.043

    Article  CAS  Google Scholar 

  29. Chen L, Ji T, Brisbin L, Zhu J (2015) Hierarchical porous and high surface area tubular carbon as dye adsorbent and capacitor electrode. ACS Appl Mater Interfaces 7(22):12230–12237. https://doi.org/10.1021/acsami.5b02697

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Liu S, Zheng X, Wang X, Xu Y, Tang H, Kang F, Yang QH, Luo J (2017) Biomass organs control the porosity of their pyrolyzed carbon. Adv Funct Mater 27(3):1604687. https://doi.org/10.1002/adfm.201770025

    Article  CAS  Google Scholar 

  31. Liu B, Liu Y, Chen H, Yang M, Li H (2017) Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J Power Sources 341:309–317. https://doi.org/10.1016/j.jpowsour.2016.12.022

    Article  CAS  Google Scholar 

  32. Sabio E, Álvarez-Murillo A, Román S, Ledesma B (2016) Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: influence of the processing variables. Waste Manag 47:122–132. https://doi.org/10.1016/j.wasman.2015.04.016

    Article  CAS  PubMed  Google Scholar 

  33. Liu S, Zhao Y, Zhang B, Xia H, Zhou J, Xie W, Li H (2018) Nano-micro carbon spheres anchored on porous carbon derived from dual-biomass as high rate performance supercapacitor electrodes. J Power Sources 381:116–126. https://doi.org/10.1016/j.jpowsour.2018.02.014

    Article  CAS  Google Scholar 

  34. Wei TY, Wei XL, Gao Y, Li HM (2015) Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors. Electrochim Acta 169:186–194. https://doi.org/10.1016/j.electacta.2015.04.082

    Article  CAS  Google Scholar 

  35. Manyala N, Bello A, Barzegar F, Khaleed AA, Momodu DY, Dangbegnon JK (2016) Coniferous pine biomass: a novel insight into sustainable carbon materials for supercapacitors electrode. Mater Chem Phys 182:139–147. https://doi.org/10.1016/j.matchemphys.2016.07.015

    Article  CAS  Google Scholar 

  36. Hou L, Hu Z, Wang X, Qiang L, Zhou Y, Lv L, Li S (2019) Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors. J Colloid Interface Sci 540:88–96. https://doi.org/10.1016/j.jcis.2018.12.029

    Article  CAS  PubMed  Google Scholar 

  37. Chen X, Wu K, Gao B, Xiao Q, Kong J, Xiong Q, Peng X, Zhang X, Fu J (2016) Three-dimensional activated carbon recycled from rotten potatoes for high-performance supercapacitors. Waste Biomass Valoriz 7(3):551–557. https://doi.org/10.1007/s12649-015-9458-0

    Article  CAS  Google Scholar 

  38. Jain A, Xu C, Jayaraman S, Balasubramanian R, Lee J, Srinivasan M (2015) Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications. Microporous Mesoporous Mater 218:55–61. https://doi.org/10.1016/j.micromeso.2015.06.041

    Article  CAS  Google Scholar 

  39. Yu M, Han Y, Li J, Wang L (2017) CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors. Chem Eng J 317:493–502. https://doi.org/10.1016/j.cej.2017.02.105

    Article  CAS  Google Scholar 

  40. Wang JC, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22(45):23710–23725. https://doi.org/10.1039/c2jm34066f

    Article  CAS  Google Scholar 

  41. Wang H, Gao Q, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131(20):7016–7022. https://doi.org/10.1021/ja8083225

    Article  CAS  PubMed  Google Scholar 

  42. Zhang G, Chen Y, Chen Y, Guo H (2018) Activated biomass carbon made from bamboo as electrode material for supercapacitors. Mater Res Bull 102:391–398. https://doi.org/10.1016/j.materresbull.2018.03.00643

    Article  CAS  Google Scholar 

  43. Song M, Zhou Y, Ren X, Wan J, Du Y, Wu G, Ma F (2019) Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance. J Colloid Interface Sci 535:276–286. https://doi.org/10.1016/j.jcis.2018.09.055

    Article  CAS  PubMed  Google Scholar 

  44. Sudhan N, Subramani K, Karnan M, Ilayaraja N, Sathish M (2017) Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes. Energy Fuel 31(1):977–985. https://doi.org/10.1021/acs.energyfuels.6b01829

    Article  CAS  Google Scholar 

  45. Qiu ZP, Wang YS, Bi X, Zhou T, Zhou J, Zhao JP, Miao ZC, Yi WM, Fu P, Zhuo SP (2018) Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J Power Sources 376:82–90. https://doi.org/10.1016/j.jpowsour.2017.11.077

    Article  CAS  Google Scholar 

  46. Cheng P, Li T, Yu H, Zhi L, Liu ZH, Lei ZB (2016) Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J Phys Chem C 120(4):2079–2086. https://doi.org/10.1021/acs.jpcc.5b11280

    Article  CAS  Google Scholar 

  47. Liu Y, Shi ZJ, Gao YF, An WD, Cao ZZ, Liu JR (2016) Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes. Acs Appl Mater Interface 8(42):28283–28290. https://doi.org/10.1021/acsami.5b11558

    Article  CAS  Google Scholar 

  48. Park MH, Kim NR, Yun YS, Cho SY, Jin H-J (2016) Waste coffee grounds-derived nanoporous carbon nanosheets for supercapacitors. Carbon Lett 19:66–71. https://doi.org/10.5714/cl.2016.19.066

    Article  Google Scholar 

  49. Guo N, Li M, Sun X, Wang F, Yang R (2017) Tremella derived ultrahigh specific surface area activated carbon for high performance supercapacitor. Mater Chem Phys 201:399–407. https://doi.org/10.1016/j.matchemphys.2017.08.054

    Article  CAS  Google Scholar 

  50. Song S, Ma F, Wu G, Ma D, Geng W, Wan J (2015) Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J Mater Chem A 3(35):18154–18162. https://doi.org/10.1039/c5ta04721h

    Article  CAS  Google Scholar 

  51. Bello A, Manyala N, Barzegar F, Khaleed AA, Momodu DY, Dangbegnon JK (2016) Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Adv 6(3):1800–1809. https://doi.org/10.1039/c5ra21708c

    Article  CAS  Google Scholar 

  52. Su X, Chen J, Zheng G, Yang J, Guan X, Liu P, Zheng X (2018) Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications. Appl Surf Sci 436:327–336. https://doi.org/10.1016/j.apsusc.2017.11.249

    Article  CAS  Google Scholar 

  53. Wang K, Zhao N, Lei S, Yan R, Tian X, Wang J, Song Y, Xu D, Guo Q, Liu L (2015) Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim Acta 166:1–11. https://doi.org/10.1016/j.electacta.2015.03.048

    Article  CAS  Google Scholar 

  54. Zhang WL, Xu JH, Hou DX, Yin J, Liu DB, He YP, Lin HB (2018) Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. J Colloid Interface Sci 530:338–344. https://doi.org/10.1016/j.jcis.2018.06.076

    Article  CAS  PubMed  Google Scholar 

  55. Guo F, Jia X, Liang S, Jiang X, Peng K, Qian L (2019) Design and synthesis of highly porous activated carbons from Sargassum as advanced electrode materials for supercapacitors. J Electrochem Soc 166(14):A3109–A3118. https://doi.org/10.1149/2.0191914jes

    Article  Google Scholar 

  56. Martin M, Balaguer M, Rigola M (1996) Feasibility of activated carbon production from biological sludge by chemical activation with ZnCl2 and H2SO4. Environ Technol 17(6):667–671. https://doi.org/10.1080/09593331708616433

    Article  CAS  Google Scholar 

  57. Cazetta AL, Pezoti O, Bedin KC, Silva TL, Paesano Junior A, Asefa T, Almeida VC (2016) Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes. ACS Sustain Chem Eng 4(3):1058–1068. https://doi.org/10.1021/acssuschemeng.5b01141

    Article  CAS  Google Scholar 

  58. Guo F, Li X, Jiang X, Zhao X, Guo C, Rao Z (2018) Characteristics and toxic dye adsorption of magnetic activated carbon prepared from biomass waste by modified one-step synthesis. Colloid Surface A 55:43–54. https://doi.org/10.1016/j.colsurfa.2018.06.061

    Article  CAS  Google Scholar 

  59. Ma G, Hua F, Sun K, Zhang Z, Feng E, Peng H, Lei Z (2016) Porous carbon derived from sorghum stalk for symmetric supercapacitors. RSC Adv 6(105):103508–103516. https://doi.org/10.1039/c6ra23552b

    Article  CAS  Google Scholar 

  60. Lu B, Hu L, Yin H, Mao X, Xiao W, Wang D (2016) Preparation and application of capacitive carbon from bamboo shells by one step molten carbonates carbonization. Int J Hydrogen Energy 41(41):18713–18720. https://doi.org/10.1016/j.ijhydene.2016.05.083

    Article  CAS  Google Scholar 

  61. Guo F, Jiang X, Li X, Peng K, Guo C, Rao Z (2019) Carbon electrode material from peanut shell by one-step synthesis for high performance supercapacitor. J Mater Sci-Mater Electron 30(1):914–925. https://doi.org/10.1007/s10854-018-0362-9

    Article  CAS  Google Scholar 

  62. Guo F, Jiang X, Jia X, Liang S, Qian L, Rao Z (2019) Synthesis of biomass carbon electrode materials by bimetallic activation for the application in supercapacitors. J Electroanal Chem 844:105–115. https://doi.org/10.1016/j.jelechem.2019.05.004

    Article  CAS  Google Scholar 

  63. Jiang X, Guo F, Jia X, Liang S, Peng K, Qian L (2020) Synthesis of biomass-based porous graphitic carbon combining chemical treatment and hydrothermal carbonization as promising electrode materials for supercapacitors. Ionics. https://doi.org/10.1007/s11581-020-03487-8

  64. Adinaveen T, Kennedy LJ, Vijaya JJ, Sekaran G (2015) Surface and porous characterization of activated carbon prepared from pyrolysis of biomass (rice straw) by two-stage procedure and its applications in supercapacitor electrodes. J Mater Cycles Waste 17(4):736–747. https://doi.org/10.1007/s10163-014-0302-67

    Article  CAS  Google Scholar 

  65. Gong Y, Li D, Luo C, Qiang F, Pan C (2017) Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem 19(17):4132–4140. https://doi.org/10.1039/c7gc01681f

    Article  CAS  Google Scholar 

  66. Liu Y, Huang B, Lin X, Xie Z (2017) Biomass-derived hierarchical porous carbons: boosting the energy density of supercapacitors via an ionothermal approach. J Mater Chem A 5(25):13009–13018. https://doi.org/10.1039/c7ta03639f

    Article  CAS  Google Scholar 

  67. Zhang S, Tian K, Cheng B-H, Jiang H (2017) Preparation of N-doped supercapacitor materials by integrated salt templating and silicon hard templating by pyrolysis of biomass wastes. ACS Sustain Chem Eng 5(8):6682–6691. https://doi.org/10.1021/acssuschemeng.7b00920

    Article  CAS  Google Scholar 

  68. Hu L, Zhu Q, Wu Q, Li D, An Z, Xu B (2018) Natural biomass-derived hierarchical porous carbon synthesized by an in situ hard template coupled with NaOH activation for ultrahigh rate supercapacitors. ACS Sustain Chem Eng 6(11):13949–13959. https://doi.org/10.1021/acssuschemeng.8b02299

    Article  CAS  Google Scholar 

  69. Wang L, Mu G, Tian C, Sun L, Zhou W, Yu P, Yin J, Fu H (2013) Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors. ChemSusChem 6(5):880–889. https://doi.org/10.1002/cssc.201200990

    Article  CAS  PubMed  Google Scholar 

  70. Lin GX, Ma RG, Zhou Y, Liu Q, Dong XP, Wang JC (2018) KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction. Electrochim Acta 261:49–57. https://doi.org/10.1016/j.electacta.2017.12.107

    Article  CAS  Google Scholar 

  71. Wang C, Wu D, Wang H, Gao Z, Xu F, Jiang K (2018) A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity. J Mater Chem A 6(3):1244–1254. https://doi.org/10.1039/c7ta07579k

    Article  CAS  Google Scholar 

  72. Elmouwahidi A, Castelo-Quibén J, Vivo-Vilches JF, Pérez-Cadenas AF, Maldonado-Hódar FJ, Carrasco-Marín F (2018) Activated carbons from agricultural waste solvothermally doped with sulphur as electrodes for supercapacitors. Chem Eng J 334:1835–1841. https://doi.org/10.1016/j.cej.2017.11.141

    Article  CAS  Google Scholar 

  73. Zhu B, Liu B, Qu C, Zhang H, Guo W, Liang Z, Chen F, Zou R (2018) Tailoring biomass-derived carbon for high-performance supercapacitors from controllably cultivated algae microspheres. J Mater Chem A 6(4):1523–1530. https://doi.org/10.1039/c7ta09608a

    Article  CAS  Google Scholar 

  74. Zhang Y, Xia XH, Liu B, Deng SJ, Xie D, Liu Q, Wang YD, Wu JB, Wang XL, Tu JP (2019) Multiscale graphene-based materials for applications in sodium ion batteries. Adv Energy Mater 9(8):1803342. https://doi.org/10.1002/aenm.201803342

    Article  CAS  Google Scholar 

  75. Chen C, Yu D, Zhao G, Du B, Tang W, Sun L, Sun Y, Besenbacher F, Yu M (2016) Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy 27:377–389. https://doi.org/10.1016/j.nanoen.2016.07.020

    Article  CAS  Google Scholar 

  76. Zhong Y, Xia XH, Deng SJ, Xie D, Shen SH, Zhang KL, Guo WH, Wang XL, Tu JP (2018) Spore carbon from Aspergillus oryzae for advanced electrochemical energy storage. Adv Mater 30(46):1805165. https://doi.org/10.1002/adma.201805165

    Article  CAS  Google Scholar 

  77. Chen C, Zhang Y, Li Y, Dai J, Song J, Yao Y, Gong Y, Kierzewski I, Xie J, Hu L (2017) All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci 10(2):538–545. https://doi.org/10.1039/c6ee03716j

    Article  CAS  Google Scholar 

  78. Li Q, Lu C, Xiao D, Zhang H, Chen C, Xie L, Liu Y, Yuan S, Kong Q, Zheng K (2018) β-Ni (OH)2 nanosheet arrays grown on biomass-derived hollow carbon microtubes for high-performance asymmetric supercapacitors. ChemElectroChem 5(9):1279–1287. https://doi.org/10.1002/celc.201800024

    Article  CAS  Google Scholar 

  79. Yu M, Han Y, Li Y, Li J, Wang L (2018) Polypyrrole-anchored cattail biomass-derived carbon aerogels for high performance binder-free supercapacitors. Carbohydr Polym 199:555–562. https://doi.org/10.1016/j.carbpol.2018.04.058

    Article  CAS  PubMed  Google Scholar 

  80. Lai F, Miao Y-E, Zuo L, Lu H, Huang Y, Liu T (2016) Biomass-derived nitrogen-doped carbon nanofiber network: a facile template for decoration of ultrathin nickel–cobalt layered double hydroxide nanosheets as high-performance asymmetric supercapacitor electrode. Small 12(24):3235–3244. https://doi.org/10.1002/smll.201600412

    Article  CAS  PubMed  Google Scholar 

  81. Deng SJ, Ai CZ, Luo M, Liu B, Zhang Y, Li YH, Lin SW, Pan GX, Xiong QQ, Liu Q, Wang XL, Xia XH, Tu JP (2019) Coupled biphase (1T-2H)-MoSe2 on mold spore carbon for advanced hydrogen evolution reaction. Small 15(30):1901796. https://doi.org/10.1002/smll.201901796

    Article  CAS  Google Scholar 

  82. Guan L, Pan L, Peng TY, Gao C, Zhao WN, Yang ZX, Hu H, Wu MB (2019) Synthesis of biomass-derived nitrogen-doped porous carbon nanosheets for high-performance supercapacitors. ACS Sustain Chem Eng 7(9):8405–8412. https://doi.org/10.1021/acssuschemeng.9b00050

    Article  CAS  Google Scholar 

  83. Ma G, Yang Q, Sun K, Peng H, Ran F, Zhao X, Lei Z (2015) Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresour Technol 197:137–142. https://doi.org/10.1016/j.biortech.2015.07.100

    Article  CAS  PubMed  Google Scholar 

  84. Sun K, Yu S, Hu Z, Li Z, Lei G, Xiao Q, Ding Y (2017) Oxygen-containing hierarchically porous carbon materials derived from wild jujube pit for high-performance supercapacitor. Electrochim Acta 231:417–428. https://doi.org/10.1016/j.electacta.2017.02.078

    Article  CAS  Google Scholar 

  85. Gao SY, Li XG, Li LY, Wei XJ (2017) A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation. Nano Energy 33:334–342. https://doi.org/10.1016/j.nanoen.2017.01.045

    Article  CAS  Google Scholar 

  86. Li Y, Wang G, Wei T, Fan Z, Yan P (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165–175. https://doi.org/10.1016/j.nanoen.2015.10.038

    Article  CAS  Google Scholar 

  87. Han J, Li Q, Peng C, Shu N, Pan F, Wang J, Zhu Y (2020) Increasing S dopant and specific surface area of N/S-codoped porous carbon by in-situ polymerization of PEDOT into biomass precursor for high performance supercapacitor. Appl Surf Sci 502:144191. https://doi.org/10.1016/j.apsusc.2019.144191

    Article  CAS  Google Scholar 

  88. Yang S, Wang S, Liu X, Li L (2019) Biomass derived interconnected hierarchical micro-meso-macro-porous carbon with ultrahigh capacitance for supercapacitor. Carbon 147:540–549. https://doi.org/10.1016/j.carbon.2019.03.023

    Article  CAS  Google Scholar 

  89. Chen H, Liu D, Shen Z, Bao B, Zhao S, Wu L (2015) Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials. Electrochim Acta 180:241–251. https://doi.org/10.1016/j.electacta.2015.08.133

    Article  CAS  Google Scholar 

  90. Shen W, Fan W (2013) Nitrogen-containing porous carbons: synthesis and application. J Mater Chem A 1(4):999–1013. https://doi.org/10.1039/c2ta00028h

    Article  CAS  Google Scholar 

  91. Sun J, Niu J, Liu M, Ji J, Dou M, Wang F (2018) Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors. Appl Surf Sci 427:807–813. https://doi.org/10.1016/j.apsusc.2017.07.220

    Article  CAS  Google Scholar 

  92. Wang Y, Song Y, Wang Y, Chen X, Xia Y, Shao Z (2015) Graphene/silk fibroin based carbon nanocomposites for high performance supercapacitors. J Mater Chem A 3(2):773–781. https://doi.org/10.1039/c4ta04772a

    Article  CAS  Google Scholar 

  93. Zhang M, Jin X, Wang L, Sun M, Tang Y, Chen Y, Sun Y, Yang X, Wan P (2017) Improving biomass-derived carbon by activation with nitrogen and cobalt for supercapacitors and oxygen reduction reaction. Appl Surf Sci 411:251–260. https://doi.org/10.1016/j.apsusc.2017.03.097

    Article  CAS  Google Scholar 

  94. Liu J, Deng Y, Li X, Wang L (2016) Promising nitrogen-rich porous carbons derived from one-step calcium chloride activation of biomass-based waste for high performance supercapacitors. ACS Sustain Chem Eng 4(1):177–187. https://doi.org/10.1021/acssuschemeng.5b00926

    Article  CAS  Google Scholar 

  95. Lin Y, Chen Z, Yu C, Zhong W (2020) Facile synthesis of high nitrogen-doped content, mesopore-dominated biomass-derived hierarchical porous graphitic carbon for high performance supercapacitors. Electrochim Acta 34:135615. https://doi.org/10.1016/j.electacta.2020.135615

    Article  CAS  Google Scholar 

  96. Sun S, Han F, Wu X, Fan Z (2019) One-step synthesis of biomass derived O, N-codoped hierarchical porous carbon with high surface area for supercapacitors. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2019.11.023

  97. Li J, Zan G, Wu Q (2016) Nitrogen and sulfur self-doped porous carbon from brussel sprouts as electrode materials for high stable supercapacitors. RSC Adv 6(62):57464–57472. https://doi.org/10.1039/c6ra08428a

    Article  CAS  Google Scholar 

  98. Liu Y, Xiao Z, Liu Y, Fan L-Z (2018) Biowaste-derived 3D honeycomb-like porous carbon with binary-heteroatom doping for high-performance flexible solid-state supercapacitors. J Mater Chem A 6(1):160–166. https://doi.org/10.1039/c7ta09055b

    Article  CAS  Google Scholar 

  99. Ling Z, Wang Z, Zhang M, Yu C, Wang G, Dong Y, Liu S, Wang Y, Qiu J (2016) Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv Funct Mater 26(1):111–119. https://doi.org/10.1002/adfm.201504004

    Article  CAS  Google Scholar 

  100. He J, Zhang D, Han M, Liu X, Wang Y, Li Y, Zhang X, Wang K, Feng H, Wang Y (2019) One-step large-scale fabrication of nitrogen doped microporous carbon by self-activation of biomass for supercapacitors application. J Energy Storage 21:94–104. https://doi.org/10.1016/j.est.2018.11.015

    Article  Google Scholar 

  101. Hou J, Cao C, Idrees F, Ma X (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9(3):2556–2564. https://doi.org/10.1021/nn506394r

    Article  CAS  PubMed  Google Scholar 

  102. Mysyk R, Raymundo-Piñero E, Anouti M, Lemordant D, Béguin F (2010) Pseudo-capacitance of nanoporous carbons in pyrrolidinium-based protic ionic liquids. Electrochem Commun 12(3):414–417. https://doi.org/10.1016/j.elecom.2010.01.007

    Article  CAS  Google Scholar 

  103. Wang C, Wu D, Wang H, Gao Z, Xu F, Jiang K (2017) Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors. J Power Sources 363:375–383. https://doi.org/10.1016/j.jpowsour.2017.07.097

    Article  CAS  Google Scholar 

  104. Wang C, Wu D, Wang H, Gao Z, Xu F, Jiang K (2018) Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance. J Colloid Interface Sci 523:133–143. https://doi.org/10.1016/j.jcis.2018.03.009

    Article  CAS  PubMed  Google Scholar 

  105. Yu W, Wang H, Liu S, Mao N, Liu X, Shi J, Liu W, Chen S, Wang X (2016) N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J Mater Chem A 4(16):5973–5983. https://doi.org/10.1039/c6ta01821a

    Article  CAS  Google Scholar 

  106. Gao S, Li L, Geng K, Wei X, Zhang S (2015) Recycling the biowaste to produce nitrogen and sulfur self-doped porous carbon as an efficient catalyst for oxygen reduction reaction. Nano Energy 16:408–418. https://doi.org/10.1016/j.nanoen.2015.07.009

    Article  CAS  Google Scholar 

  107. Xu G, Han J, Ding B, Nie P, Pan J, Dou H, Li H, Zhang X (2015) Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem 17(3):1668–1674. https://doi.org/10.1039/c4gc02185a

    Article  CAS  Google Scholar 

  108. Li YJ, Yu N, Yan P, Li YG, Zhou XM, Chen SL, Wang GL, Wei T, Fan ZJ (2015) Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors. J Power Sources 300:309–317. https://doi.org/10.1016/j.jpowsour.2015.09.077

    Article  CAS  Google Scholar 

  109. Wang X, Chen S, Li D, Sun S, Peng Z, Komarneni S, Yang D (2018) Direct interfacial growth of MnO2 nanostructure on hierarchically porous carbon for high-performance asymmetric supercapacitors. ACS Sustain Chem Eng 6(1):633–641. https://doi.org/10.1021/acssuschemeng.7b02960

    Article  CAS  Google Scholar 

  110. Wang L, Yu J, Dong X, Li X, Xie Y, Chen S, Li P, Hou H, Song Y (2016) Three-dimensional macroporous carbon/Fe3O4-doped porous carbon nanorods for high-performance supercapacitor. ACS Sustain Chem Eng 4(3):1531–1537. https://doi.org/10.1021/acssuschemeng.5b01474

    Article  CAS  Google Scholar 

  111. Pourhosseini S, Norouzi O, Salimi P, Naderi HR (2018) Synthesis of a novel interconnected 3D pore network algal biochar constituting iron nanoparticles derived from a harmful marine biomass as high-performance asymmetric supercapacitor electrodes. ACS Sustain Chem Eng 6(4):4746–4758. https://doi.org/10.1021/acssuschemeng.7b03871

    Article  CAS  Google Scholar 

  112. Fang K, Chen J, Zhou X, Mei C, Tian Q, Xu J, Wong C-P (2018) Decorating biomass-derived porous carbon with Fe2O3 ultrathin film for high-performance supercapacitors. Electrochim Acta 261:198–205. https://doi.org/10.1016/j.electacta.2017.12.140

    Article  CAS  Google Scholar 

  113. Shi Z, Xing L, Liu Y, Gao Y, Liu J (2018) A porous biomass-based sandwich-structured Co3O4@ carbon fiber@ Co3O4 composite for high-performance supercapacitors. Carbon 129:819–825

    Article  CAS  Google Scholar 

  114. Edison TNJI, Atchudan R, Sethuraman MG, Lee YR (2016) Supercapacitor performance of carbon supported Co3O4 nanoparticles synthesized using Terminalia chebula fruit. J Taiwan Inst Chem Eng 68:489–495. https://doi.org/10.1016/j.carbon.2017.12.105

    Article  CAS  Google Scholar 

  115. Nagaraju G, Cha SM, Yu JS (2017) Ultrathin nickel hydroxide nanosheet arrays grafted biomass-derived honeycomb-like porous carbon with improved electrochemical performance as a supercapacitive material. Sci Rep-UK 7:45201. https://doi.org/10.1038/srep45201

    Article  CAS  Google Scholar 

  116. Yang Y, Yang F, Lee S, Li X, Zhao H, Wang Y, Hao S, Zhang X (2016) Facile fabrication of MnOx and N co-doped hierarchically porous carbon microspheres for high-performance supercapacitors. Electrochim Acta 191:1018–1025. https://doi.org/10.1016/j.electacta.2016.01.075

    Article  CAS  Google Scholar 

  117. Zhang H, Zhang Z, Luo JD, Qi XT, Yu J, Cai JX, Yang ZY (2019) Molten-salt-assisted synthesis of hierarchical porous MnO@Biocarbon composites as promising electrode materials for supercapacitors and lithium-ion batteries. Chemsuschem 12(1):283–290. https://doi.org/10.1002/cssc.201802245

    Article  CAS  PubMed  Google Scholar 

  118. Paleo A, Staiti P, Brigandì A, Ferreira F, Rocha A, Lufrano F (2018) Supercapacitors based on AC/MnO2 deposited onto dip-coated carbon nanofiber cotton fabric electrodes. Energy Storage Mater 12:204–215. https://doi.org/10.1016/j.ensm.2017.12.013

    Article  Google Scholar 

  119. Yang G, Park S-J (2018) MnO2 and biomass-derived 3D porous carbon composites electrodes for high performance supercapacitor applications. J Alloys Compd 741:360–367. https://doi.org/10.1016/j.jallcom.2018.01.108

    Article  CAS  Google Scholar 

  120. He S, Chen W (2015) Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors. J Power Sources 294:150–158. https://doi.org/10.1016/j.jpowsour.2015.06.051

    Article  CAS  Google Scholar 

  121. Kumar R, Singh RK, Vaz AR, Savu R, Moshkalev SA (2017) Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl Mater Interfaces 9(10):8880–8890. https://doi.org/10.1021/acsami.6b14704

    Article  CAS  PubMed  Google Scholar 

  122. Yao L, Yang J, Zhang P, Deng L (2018) In situ surface decoration of Fe3C/Fe3O4/C nanosheets: Towards bi-functional activated carbons with supercapacitance and efficient dye adsorption. Bioresour Technol 256:208–215. https://doi.org/10.1016/j.biortech.2018.02.027

    Article  CAS  PubMed  Google Scholar 

  123. Sinan N, Unur E (2016) Fe3O4/carbon nanocomposite: investigation of capacitive & magnetic properties for supercapacitor applications. Mater Chem Phys 183:571–579. https://doi.org/10.1016/j.matchemphys.2016.09.016

    Article  CAS  Google Scholar 

  124. Li X, Wei J, Li Q, Zheng S, Xu Y, Du P, Chen C, Zhao J, Xue H, Xu Q (2018) Nitrogen-doped cobalt oxide nanostructures derived from cobalt–alanine complexes for high-performance oxygen evolution reactions. Adv Funct Mater 28(23):1800886. https://doi.org/10.1002/adfm.201800886

    Article  CAS  Google Scholar 

  125. Cui J, Xi Y, Chen S, Li D, She X, Sun J, Han W, Yang D, Guo S (2016) Prolifera-green-tide as sustainable source for carbonaceous aerogels with hierarchical pore to achieve multiple energy storage. Adv Funct Mater 26(46):8487–8495. https://doi.org/10.1002/adfm.201603933

    Article  CAS  Google Scholar 

  126. Zhang J, Chen J, Yang H, Fan J, Zhou F, Wang Y, Wang G, Wang R (2017) Biomass-derived porous carbon electrode modified with nanostructured nickel-cobalt hydroxide for high-performance supercapacitors. J Solid State Electrochem 21(10):2975–2984. https://doi.org/10.1007/s10008-017-3617-0

    Article  CAS  Google Scholar 

  127. Yang H, Tang Y, Sun X, Liu Q, Huang X, Wang L, Fu Z, Zhang Q, Or SW (2017) Biomass-derived porous carbon materials with NiS nanoparticles for high performance supercapacitors. J Mater Sci-Mater Electron 28(19):14874–14883. https://doi.org/10.1007/s10854-017-7359-7

    Article  CAS  Google Scholar 

  128. Nan J, Shi Y, Xiang Z, Wang S, Yang J, Zhang B (2019) Ultrathin NiCo2O4 nanosheets assembled on biomass-derived carbon microsheets with polydopamine for high-performance hybrid supercapacitors. Electrochim Acta 301:107–116. https://doi.org/10.1016/j.electacta.2019.01.167

    Article  CAS  Google Scholar 

  129. Jayakumar A, Antony RP, Zhao J, Lee J-M (2018) MOF-derived nickel and cobalt metal nanoparticles in a N-doped coral shaped carbon matrix of coconut leaf sheath origin for high performance supercapacitors and OER catalysis. Electrochim Acta 265:336–347. https://doi.org/10.1016/j.electacta.2018.01.210

    Article  CAS  Google Scholar 

  130. Zhang M, Song Z, Liu H, Ma T (2020) Biomass-derived highly porous nitrogen-doped graphene orderly supported NiMn2O4 nanocrystals as efficient electrode materials for asymmetric supercapacitors. Appl Surf Sci 507:145065. https://doi.org/10.1016/j.apsusc.2019.145065

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51876217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feiqiang Guo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, L., Guo, F., Jia, X. et al. Recent development in the synthesis of agricultural and forestry biomass-derived porous carbons for supercapacitor applications: a review. Ionics 26, 3705–3723 (2020). https://doi.org/10.1007/s11581-020-03626-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03626-1

Keywords

Navigation