Skip to main content
Log in

Synergistic lubrication effect of Al2O3 and MoS2 nanoparticles confined between iron surfaces: a molecular dynamics study

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nonequilibrium molecular dynamics (NEMD) simulations were performed to investigate the tribology behaviors of Al2O3 and MoS2 nanoparticles confined between iron (Fe) slabs. Results indicated that the combined use of these two nanoparticles yielded the lowest and most stable friction force, normal force, interface temperature and wear rate, which exhibited a significant synergistic lubrication effect. A novel parameter the rolling/sliding motion coefficient (Krs) was proposed to evaluate the motion pattern of spherical Al2O3. There were 51% rolling + 49% sliding motion when used alone and 91% rolling + 9% sliding in the existence of MoS2. Similarly, about 72.3% of the friction was shared by interlayer sliding of MoS2 monolayers in the presence of Al2O3, which was higher than used alone (54.8%). Then, the diffusion of atoms at the friction interface was explored to reveal the synergistic lubrication mechanism. The tribofilm formed by the diffusion of Fe and S atoms could protect the metal surfaces from further wear. The adsorption of S atoms to Al2O3 nanoparticle could promote its rolling effect and prevent it from embedding into iron matrix. Besides, Al2O3 could also facilitate the separation of MoS2 monolayers to enhance their interlayer sliding effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Wang W, Zhang G, Xie G (2019) Ultralow concentration of graphene oxide nanosheets as oil-based lubricant additives. Appl Surf Sci 498:143683. https://doi.org/10.1016/j.apsusc.2019.143683

    Article  CAS  Google Scholar 

  2. Han X, Zhang Z, Thrush SJ, Barber GC, Qu H (2020) Ionic liquid stabilized nanoparticle additive in a steel-ceramic contact for extreme pressure application. Wear 452–453:203264. https://doi.org/10.1016/j.wear.2020.203264

    Article  CAS  Google Scholar 

  3. Wu H, Zhao J, Xia W, Cheng X, He A, Yun JH, Wang L, Huang H, Jiao S, Huang L, Zhang S, Jiang Z (2017) Analysis of TiO2 nano-additive water-based lubricants in hot rolling of microalloyed steel. J Manuf Process 27:26–36. https://doi.org/10.1016/j.jmapro.2017.03.011

    Article  Google Scholar 

  4. Liu C, Friedman O, Li Y, Li S, Tian Y, Golan Y, Meng Y (2019) Electric response of CuS nanoparticle lubricant additives: the effect of crystalline and amorphous octadecylamine surfactant capping layers. Langmuir 35:15825–15833. https://doi.org/10.1021/acs.langmuir.9b01714

    Article  CAS  Google Scholar 

  5. Jiang Z, Zhang Y, Yang G, Gao C, Yu L, Zhang S, Zhang P (2019) Synthesis of oil-soluble WS2 nanosheets under mild condition and study of their effect on tribological properties of poly-alpha olefin under evaluated temperatures. Tribol Int 138:68–78. https://doi.org/10.1016/j.triboint.2019.05.036

    Article  CAS  Google Scholar 

  6. Xie H, Dang S, Jiang B, Xiang L, Zhou S, Sheng H, Yang T, Pan F (2019) Tribological performances of SiO2/graphene combinations as water-based lubricant additives for magnesium alloy rolling. Appl Surf Sci 475:847–856. https://doi.org/10.1016/j.apsusc.2019.01.062

    Article  CAS  Google Scholar 

  7. He J, Sun J, Meng Y, Yan X (2019) Preliminary investigations on the tribological performance of hexagonal boron nitride nanofluids as lubricant for steel/steel friction pairs. Surf Topogr-Metrol 7:015022. https://doi.org/10.1088/2051-672X/ab0afb

    Article  CAS  Google Scholar 

  8. Ashour ME, Osman TA, Khattab A, Elshalakny AB (2017) Novel tribological behavior of hybrid MWCNTs/MLNGPs as an additive on lithium grease. J Tribol 139:041801. https://doi.org/10.1115/1.4035345

    Article  CAS  Google Scholar 

  9. Xiong S, Liang D, Wu H, Zhang B (2020) Synthesis, characterisation, and tribological evaluation of Mn3B7O13Cl nanoparticle as efficient antiwear lubricant in the sliding wear between tantalum strips and steel ball. Lubr Sci 32:121–130. https://doi.org/10.1002/ls.1491

    Article  CAS  Google Scholar 

  10. Ghaednia H, Babaei H, Jackson RL, Bozack MJ, Khodadadi JM (2013) The effect of nanoparticles on thin film elasto-hydrodynamic lubrication. Appl Phys Lett 103:263111. https://doi.org/10.1063/1.4858485

    Article  CAS  Google Scholar 

  11. Kao M-J, Lin C-R (2009) Evaluating the role of spherical titanium oxide nanoparticles in reducing friction between two pieces of cast iron. J Alloy Compd 483:456–459. https://doi.org/10.1016/j.jallcom.2008.07.223

    Article  CAS  Google Scholar 

  12. Lee K, Hwang Y, Cheong S, Choi Y, Kwon L, Lee J, Kim SH (2009) Understanding the role of nanoparticles in nano-oil lubrication. Tribol Lett 35(2):127–131. https://doi.org/10.1007/s11249-009-9441-7

    Article  CAS  Google Scholar 

  13. Bao Y, Sun J, Kong L (2017) Effects of nano-SiO2 as water-based lubricant additive on surface qualities of strips after hot rolling. Tribol Int 114:257–263. https://doi.org/10.1016/j.triboint.2017.04.026

    Article  CAS  Google Scholar 

  14. Luo T, Wang P, Qiu Z, Yang S, Zeng H, Cao B (2016) Smooth and solid WS2 submicrospheres grown by a new laser fragmentation and reshaping process with enhanced tribological properties. Chem Commun 52:10147–10150. https://doi.org/10.1039/c6cc04212k

    Article  CAS  Google Scholar 

  15. Roy S, Jazaa Y, Sundararajan S (2019) Investigating the micropitting and wear performance of copper oxide and tungsten carbide nanofluids under boundary lubrication. Wear 428–429:55–63. https://doi.org/10.1016/j.wear.2019.03.007

    Article  CAS  Google Scholar 

  16. Wu P, Chen X, Zhang C, Luo J (2019) Synergistic tribological behaviors of graphene oxide and nanodiamond as lubricating additives in water. Tribol Int 132:177–184. https://doi.org/10.1016/j.triboint.2018.12.021

    Article  CAS  Google Scholar 

  17. Wang S, Zhou S, Huang J, Zhao G, Liu Y (2019) Attaching ZrO2 nanoparticles onto the surface of graphene oxide via electrostatic self-assembly for enhanced mechanical and tribological performance of phenolic resin composites. J Mater Sci 54:8247–8261. https://doi.org/10.1007/s10853-019-03512-w

    Article  CAS  Google Scholar 

  18. Sharma AK, Singh RK, Dixit AR, Tiwari AK (2017) Novel uses of alumina-MoS2 hybrid nanoparticle enriched cutting fluid in hard turning of AISI 304 steel. J Manuf Process 30:467–482. https://doi.org/10.1016/j.jmapro.2017.10.016

    Article  Google Scholar 

  19. He J, Sun J, Meng Y, Pei Y (2020) Superior lubrication performance of MoS2–Al2O3 composite nanofluid in strips hot rolling. J Manuf Process 57:312–323. https://doi.org/10.1016/j.jmapro.2020.06.037

    Article  Google Scholar 

  20. Ewen JP, Heyes DM, Dini D (2018) Advances in nonequilibrium molecular dynamics simulations of lubricants and additives. Friction 6:349–386. https://doi.org/10.1007/s40544-018-0207-9

    Article  CAS  Google Scholar 

  21. Ewen JP, Gattinoni C, Thakkar FM, Morgan N, Spikes HA, Dini D (2016) Nonequilibrium molecular dynamics investigation of the reduction in friction and wear by carbon nanoparticles between iron surfaces. Tribol Lett 63:38–52. https://doi.org/10.1007/s11249-016-0722-7

    Article  CAS  Google Scholar 

  22. Su LL, Krin J, Brenner DW (2020) Dynamics of neutral and charged nanodiamonds in aqueous media confined between gold surfaces under normal and shear loading. ACS Omega 5(18):10349–10358. https://doi.org/10.1021/acsomega.0c00073

    Article  CAS  Google Scholar 

  23. Shi J, Fang L, Sun K (2018) Friction and wear reduction via tuning nanoparticle shape under low humidity conditions: a nonequilibrium molecular dynamics simulation. Comput Mater Sci 154:499–507. https://doi.org/10.1016/j.commatsci.2018.06.043

    Article  CAS  Google Scholar 

  24. Onodera T, Morita Y, Suzuki A et al (2009) A computational chemistry study on friction of h-MoS2. Part I. Mechanism of single sheet lubrication. J Phys Chem B 113(52):16526–16536. https://doi.org/10.1021/jp9069866

    Article  CAS  Google Scholar 

  25. Hu C, Yi C, Bai M, Lv J, Tang D (2020) Molecular dynamics study of the frictional properties of multilayer MoS2. RSC Adv 10:17418–17426. https://doi.org/10.1039/d0ra00995d

    Article  CAS  Google Scholar 

  26. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  27. Evans DJ, Holian BL (1998) The Nose–Hoover thermostat. J Chem Phys 83:4069–4074. https://doi.org/10.1063/1.449071

    Article  Google Scholar 

  28. Sam A, Kannam SK, Hartkamp R, Sathian SP (2017) Water flow in carbon nanotubes: the effect of tube flexibility and thermostat. J Chem Phys 146:234701. https://doi.org/10.1063/1.4985252

    Article  CAS  Google Scholar 

  29. Tang Z, Li S (2014) A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr Opin Solid State Mater Sci 18:119–139. https://doi.org/10.1016/j.cossms.2014.02.002

    Article  CAS  Google Scholar 

  30. Hu C, Bai M, Lv J, Liu H, Li X (2014) Molecular dynamics investigation of the effect of copper nanoparticle on the solid contact between friction surfaces. Appl Surf Sci 321:302–309. https://doi.org/10.1016/j.apsusc.2014.10.006

    Article  CAS  Google Scholar 

  31. Chen KY, Liu HB, Li XP, Han QY, Hu ZQ (1995) Molecular dynamics simulation of local structure of aluminium and copper in supercooled liquid and solid state by using EAM. J Phys-Condens Matter 7:2379–2394. https://doi.org/10.1088/0953-8984/7/12/003

    Article  CAS  Google Scholar 

  32. Johnson RA, Oh DJ (1989) Analytic embedded atom method model for bcc metals. J Mater Res 4:1195–1201. https://doi.org/10.1557/JMR.1989.1195

    Article  CAS  Google Scholar 

  33. Erdemir A, Eryilmaz O (2014) Achieving superlubricity in DLC films by controlling bulk, surface, and tribochemistry. Friction 2:140–155. https://doi.org/10.1007/s40544-014-0055-1

    Article  CAS  Google Scholar 

  34. Wu L, Keer LM, Lu J, Song B, Gu L (2018) Molecular dynamics simulations of the rheological properties of graphene–PAO nanofluids. J Mater Sci 53:15969–15976. https://doi.org/10.1007/s10853-018-2756-8

    Article  CAS  Google Scholar 

  35. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035. https://doi.org/10.1021/ja00051a040

    Article  CAS  Google Scholar 

  36. Farahani H, Rajabpour A, Khanaki M, Reyhani A (2018) Interfacial thermal resistance between few-layer MoS2 and silica substrates: a molecular dynamics study. Comput Mater Sci 142:1–6. https://doi.org/10.1016/j.commatsci.2017.09.052

    Article  CAS  Google Scholar 

  37. Zhao W, Duan F (2020) Friction properties of carbon nanoparticles (nanodiamond and nanoscroll) confined between DLC and a-SiO2 surfaces. Tribol Int 145:106153. https://doi.org/10.1016/j.triboint.2019.106153

    Article  CAS  Google Scholar 

  38. Diana B, Sanket AD, Subramanian KS, Ali E, Anirudha VS (2015) Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348:1118–1122. https://doi.org/10.1126/science.1262024

    Article  CAS  Google Scholar 

  39. Tuckerman M, Berne BJ, Martyna GJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97:1990–2001. https://doi.org/10.1063/1.463137

    Article  CAS  Google Scholar 

  40. Sammaiah P, Ashwini V, Suresh A, Sushanth C, Sudheer Kumar N (2018) Analysis of Al2O3 nano particles and its deposition on steel by cold spray process. Mater Today Proc 5:20535–20543. https://doi.org/10.1016/j.matpr.2018.06.431

  41. Kumari S, Chouhan A, Sharma OP et al (2020) Structural-defect-mediated grafting of alkylamine on few-layer MoS2 and its potential for enhancement of tribological properties. ACS Appl Mater Interfaces 12:30720–30730. https://doi.org/10.1021/acsami.0c08307

    Article  CAS  Google Scholar 

  42. Hu C, Bai M, Lv J, Kou Z, Li X (2015) Molecular dynamics simulation on the tribology properties of two hard nanoparticles (diamond and silicon dioxide) confined by two iron blocks. Tribol Int 90:297–305. https://doi.org/10.1016/j.triboint.2015.04.043

    Article  CAS  Google Scholar 

  43. Berro H, Fillot N, Vergne P, Tokumasu T, Ohara T, Kikugawa G (2011) Energy dissipation in non-isothermal molecular dynamics simulations of confined liquids under shear. J Chem Phys 135:134708. https://doi.org/10.1063/1.3644938

    Article  CAS  Google Scholar 

  44. Ewen JP, Gao H, Muser MH, Dini D (2019) Shear heating, flow, and friction of confined molecular fluids at high pressure. Phys Chem Chem Phys 21:5813–5823. https://doi.org/10.1039/c8cp07436d

    Article  CAS  Google Scholar 

  45. Gattinoni C, Heyes DM, Lorenz CD, Dini D (2013) Traction and nonequilibrium phase behavior of confined sheared liquids at high pressure. Phys Rev E 88:052406. https://doi.org/10.1103/PhysRevE.88.052406

    Article  Google Scholar 

  46. Huang Y, Liu L, Yang J, Chen Y (2019) Nanotribological properties of ALD-made ultrathin MoS2 influenced by film thickness and scanning velocity. Langmuir 35:3651–3657. https://doi.org/10.1021/acs.langmuir.8b03970

    Article  CAS  Google Scholar 

  47. Berman D, Mutyala KC, Srinivasan S, Sankaranarayanan SS, Erdemir A, Shevchenko EV, Sumant AV (2019) Iron-nanoparticle driven tribochemistry leading to superlubric sliding interfaces. Adv Mater Interfaces 6:1901416. https://doi.org/10.1002/admi.201901416

    Article  CAS  Google Scholar 

  48. Joly-Pottuz L, Bucholz EW, Matsumoto N, Phillpot SR, Sinnott SB, Ohmae N, Martin JM (2009) Friction properties of carbon nano-onions from experiment and computer simulations. Tribol Lett 37:75–81. https://doi.org/10.1007/s11249-009-9492-9

    Article  CAS  Google Scholar 

  49. Upadhyay RK, Kumar A (2019) Effect of humidity on the synergy of friction and wear properties in ternary epoxy-graphene-MoS2 composites. Carbon 146:717–727. https://doi.org/10.1016/j.carbon.2019.02.015

    Article  CAS  Google Scholar 

  50. Maruda RW, Krolczyk GM, Feldshtein E, Nieslony P, Tyliszczak B, Pusavec F (2017) Tool wear characterizations in finish turning of AISI 1045 carbon steel for MQCL conditions. Wear 372–373:54–67. https://doi.org/10.1016/j.wear.2016.12.006

    Article  CAS  Google Scholar 

  51. Kim HJ, Kim WK, Falk ML, Rigney DA (2007) MD simulations of microstructure evolution during high-velocity sliding between crystalline materials. Tribol Lett 28:299–306. https://doi.org/10.1007/s11249-007-9273-2

    Article  Google Scholar 

  52. He A, Huang S, Yun J-H, el al, (2017) Tribological performance and lubrication mechanism of alumina nanoparticle water-based suspensions in ball-on-three-plate testing. Tribol Lett 65:40–50. https://doi.org/10.1007/s11249-017-0823-y

    Article  CAS  Google Scholar 

  53. Xiong S, Sun J, Xu Y, Yan X, Li Y (2016) Tribological performance and wear mechanism of compound containing S, P, and B as EP/AW additives in copper foil oil. Tribol T 59:421–427. https://doi.org/10.1080/10402004.2015.1083066

    Article  CAS  Google Scholar 

  54. Zhang Y, Feng K, Shui Y (2019) Effect of MoS2 on iron-based friction material prepared directly from vanadium-bearing titanomagnetite concentrates. Met Mater Int 26:1070–1078. https://doi.org/10.1007/s12540-019-00374-4

    Article  CAS  Google Scholar 

  55. Sidashov AV, Kozakov AT, Yares’ko SI, Kakovkina NG, Manturov DS (2020) Study of the phase composition and tribological properties of carbon tool steels after laser surface hardening by quasi-CW fiber laser. Surf Coat Technol 385:125472. https://doi.org/10.1016/j.surfcoat.2020.125427

    Article  CAS  Google Scholar 

  56. Su Y, Song J, Zhang Y, Fan H, Hu L (2019) Influence of fiber diameters on fracture and tribological properties of Al2O3/MoS2 fibrous monolithic ceramic. Tribol Int 138:32–39. https://doi.org/10.1016/j.triboint.2019.05.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (No. 51874036), Beijing Municipal Natural Science Foundation (No. 2182041) and Beijing Municipal Education Commission (No. KM201911417002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Sun.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Sun, J., Meng, Y. et al. Synergistic lubrication effect of Al2O3 and MoS2 nanoparticles confined between iron surfaces: a molecular dynamics study. J Mater Sci 56, 9227–9241 (2021). https://doi.org/10.1007/s10853-021-05889-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05889-z

Navigation