Skip to main content

Advertisement

Log in

Multi-vacancy Co3O4 on nickel foam synthesized via a one-step hydrothermal method for high-efficiency electrocatalytic benzyl alcohol oxidation

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Introducing anion and cation vacancies into Co-based oxides is a promising strategy to promote their catalytic activity. However, the mild and effective methods for synthesizing cobalt oxide and vacancies are rarely proposed. In this work, via an innovative one-step hydrothermal process, we synthesized Co3O4-based catalyst, which was successively proven rich with oxygen vacancies (VO) and cobalt vacancies (VCo). As an electrocatalyst for benzyl alcohol (BA) oxidation, the vacancy-rich Co3O4 on nickel foam (NF) with optimized electronic structure displayed a super high conversion (> 99%) and selectivity (> 99%) for benzoic acid (BAc) with excellent recyclability, representing one of the best Co‐based catalysts. X-ray photoelectron spectroscopy (XPS) and X-ray adsorption near-edge structure (XANES) technologies coupled with density functional theory calculations (DFT) demonstrated the obvious electronic delocalization caused by vacancies not only lowered the adsorption energy of BA and improved the intrinsic activity of catalytic Co sites for faster reaction kinetics, but also narrowed the band gap for better electrical conductivity. This work opens up a new simple synthetic idea to construct the high-performance electrocatalysts by tuning electronic structure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chen YZ, Wang ZU, Wang H, Lu J, Yu SH, Jiang HL (2017) Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: the roles of photothermal effect and pt electronic state. J Am Chem Soc 139(5):2035–2044. https://doi.org/10.1021/jacs.6b12074

    Article  CAS  Google Scholar 

  2. Yoskamtorn T, Yamazoe S, Takahata R, Nishigaki JI, Tsukuda T (2014) Thiolate-mediated selectivity control in aerobic alcohol oxidation by porous carbon-supported Au25 clusters. ACS Catal 4(10):3696–3700. https://doi.org/10.1021/cs501010x

    Article  CAS  Google Scholar 

  3. Zhang P, Gong Y, Li H, Chen Z, Wang Y (2013) Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@N-doped carbon from glucose. Nat Commun 4(3):1593. https://doi.org/10.1038/ncomms2586

    Article  CAS  Google Scholar 

  4. Wei Z, Liu H, Bai C, Liao S, Li Y (2017) Base-free oxidation of alcohols to esters at room temperature and atmospheric conditions using nanoscale Co-based catalysts. ACS Catal 5(3):150212121425009. https://doi.org/10.1021/cs502101c

    Article  CAS  Google Scholar 

  5. Guo Z, Liu B, Zhang Q, Deng W, Wang Y, Yang Y (2014) Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem Soc Rev 43(10):3480–3524. https://doi.org/10.1002/chin.201428268

    Article  CAS  Google Scholar 

  6. Yin Z, Zheng Y, Wang H, Li J, Zhu Q, Wang Y, Ma N, Hu G, He B, Knop-Gericke A (2017) Engineering interface with one-dimensional Co3O4 nanostructure in catalytic membrane electrode: toward an advanced electrocatalyst for alcohol oxidation. ACS Nano 11(12):12365–12377. https://doi.org/10.1021/acsnano.7b06287

    Article  CAS  Google Scholar 

  7. Jagadeesh RV, Junge H, Pohl M-M, Radnik J, Brückner A, Beller M (2013) Selective oxidation of alcohols to esters using heterogeneous Co3O4-N@C catalysts under mild conditions. J Am Chem Soc 135(29):10776–10782. https://doi.org/10.1021/ja403615c

    Article  CAS  Google Scholar 

  8. Zheng J, Chen X, Zhong X, Li S, Liu T, Zhuang G, Li X, Deng S, Mei D, Wang J-G (2017) Hierarchical porous NC@CuCo nitride nanosheet networks: highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol. Adv Funct Mater 27(46):1704169. https://doi.org/10.1002/adfm.201704169

    Article  CAS  Google Scholar 

  9. Huang Y, Yang R, Anandhababu G, Xie J, Lv J, Zhao X, Wang X, Wu M, Li Q, Wang Y (2018) Cobalt/Iron(Oxides) heterostructures for efficient oxygen evolution and benzyl alcohol oxidation reactions. ACS Energy Lett 3(8):1854–1860. https://doi.org/10.1021/acsenergylett.8b01071

    Article  CAS  Google Scholar 

  10. Yoshida J-i, Kataoka K, Horcajada R, Nagaki A (2008) modern strategies in electroorganic synthesis. Chem Rev 108(7):2265–2299. https://doi.org/10.1021/cr0680843

    Article  CAS  Google Scholar 

  11. Schaub R (2003) Oxygen-mediated diffusion of oxygen vacancies on the TiO2 (110) surface. Science 299(5605):377–379. https://doi.org/10.1126/science.1078962

    Article  CAS  Google Scholar 

  12. Guan M, Xiao C, Zhang J, Fan S, Xie Y (2013) Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J Am Chem Soc 135(28):10411–10417. https://doi.org/10.1021/ja402956f

    Article  CAS  Google Scholar 

  13. Cheng F, Zhang T, Yi Z, Jing D, Chen J (2013) enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew Chem Int Ed 52(9):2474–2477. https://doi.org/10.1002/anie.201208582

    Article  CAS  Google Scholar 

  14. Kuang M, Han P, Huang L, Cao N, Qian L, Zheng G (2018) Electronic tuning of Co, Ni-based nanostructured (Hydr)oxides for aqueous electrocatalysis. Adv Funct Mater 28(52):1804886. https://doi.org/10.1002/adfm.201804886

    Article  CAS  Google Scholar 

  15. Zhang R, Zhang Y-C, Pan L, Shen G-Q, Mahmood N, Ma Y-H, Shi Y, Jia W, Wang L, Zhang X, Xu W, Zou J-J (2018) Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution. ACS Catal 8(5):3803–3811. https://doi.org/10.1021/acscatal.8b01046

    Article  CAS  Google Scholar 

  16. Huang G, Xiao Z, Chen R, Wang S (2018) defect engineering of cobalt-based materials for electrocatalytic water splitting. ACS Sustain Chem Eng 6(12):15954–15969. https://doi.org/10.1021/acssuschemeng.8b04397

    Article  CAS  Google Scholar 

  17. Yiyin H, Rui Y, Ganesan A, Jiafang X, Jiangquan L, Xiaotao Z, Xueyuan W, Maoxiang W, Qiaohong L, Yaobing W (2018) Cobalt/Iron (Oxides) heterostructures for efficient oxygen evolution and benzyl alcohol oxidation reactions. ACS Energy Lett 3(8):1854–1860. https://doi.org/10.1021/acsenergylett.8b01071

    Article  CAS  Google Scholar 

  18. Zhu J, Ren Z, Du S, Xie Y, Wu J, Meng H, Xue Y, Fu H (2017) Co-vacancy-rich Co1-xS nanosheets anchored on rGO for high-efficiency oxygen evolution. Nano Res 10(5):1819–1831. https://doi.org/10.1007/s12274-017-1511-9

    Article  CAS  Google Scholar 

  19. Zhuang L, Ge L, Yang Y, Li M, Jia Y, Yao X, Zhu Z (2017) Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv Mater 29(17):1606793. https://doi.org/10.1002/adma.201606793

    Article  CAS  Google Scholar 

  20. Li Y, Li F-M, Meng X-Y, Li S-N, Zeng J-H, Chen Y (2018) Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal 8(3):1913–1920. https://doi.org/10.1021/acscatal.7b03949

    Article  CAS  Google Scholar 

  21. Xu L, Jiang Q, Xiao Z, Li X, Huo J, Wang S, Dai L (2016) Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Int Ed Engl 55(17):5277–5281. https://doi.org/10.1002/anie.201600687

    Article  CAS  Google Scholar 

  22. Tang Y, Liu Q, Dong L, Wu HB, Yu X-Y (2020) Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction. Appl Catal B Environ 266:118627. https://doi.org/10.1016/j.apcatb.2020.118627

    Article  CAS  Google Scholar 

  23. Cheng X, Dong G, Zhang Y, Feng C, Bi Y (2020) Dual-bonding interactions between MnO2 cocatalyst and TiO2 photoanodes for efficient solar water splitting. Appl Catal B: Environ 267:118723. https://doi.org/10.1016/j.apcatb.2020.118723

    Article  CAS  Google Scholar 

  24. Nayak S, Dasari K, Joshi DC, Pramanik P, Palai R, Sathe V, Chauhan RN, Tiwari N, Thota S (2016) Spectroscopic studies of Co2TiO4 and Co3O4 two-phase composites. Phys Status Solidi (b) 253(11):2270–2282. https://doi.org/10.1002/pssb.201600295

    Article  CAS  Google Scholar 

  25. Lorite I, Romero JJ, Fernández JF (2012) Effects of the agglomeration state on the Raman properties of Co3O4 nanoparticles. J Raman Spectrosc 43(10):1443–1448. https://doi.org/10.1002/jrs.4098

    Article  CAS  Google Scholar 

  26. Wang Z, Xu W, Chen X, Peng Y, Song Y, Lv C, Liu H, Sun J, Yuan D, Li X, Guo X, Yang D, Zhang L (2019) Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis. Adv Funct Mater 29(33):1902875. https://doi.org/10.1002/adfm.201902875

    Article  CAS  Google Scholar 

  27. Liu D, Zhang C, Yu Y, Shi Y, Yu Y, Niu Z, Zhang B (2018) Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays. Nano Res 11:603–613. https://doi.org/10.1007/s12274-017-1670-8

    Article  CAS  Google Scholar 

  28. Białek B, Kim IG, Lee JI (2006) Density functional investigation of the electronic structure of cobalt phthalocyanine monolayer. Thin Solid Films 513(1):110–113. https://doi.org/10.1016/j.tsf.2006.01.050

    Article  CAS  Google Scholar 

  29. Liao M-S, Scheiner S (2001) Electronic structure and bonding in metal phthalocyanines, metal = Fe Co, Ni, Cu, Zn, Mg. J Chem Phys 114(22):9780. https://doi.org/10.1063/1.1367374

    Article  CAS  Google Scholar 

  30. Beltrán JJ, Barrero CA, Punnoose A (2014) Evidence of ferromagnetic signal enhancement in Fe and Co codoped ZnO nanoparticles by increasing superficial Co3+ content. J Phys Chem C 118(24):13203–13217. https://doi.org/10.1021/jp501933k

    Article  CAS  Google Scholar 

  31. Tarábek J, Klusáčková M, Janda P, Tarábková H, Rulíšek L, Plšek J (2014) Spontaneous adsorption of a Co-phthalocyanine ionic derivative on HOPG. An in situ EPR study. J Phys Chem C 118(8):4198–4206. https://doi.org/10.1021/jp410851k

    Article  CAS  Google Scholar 

  32. Pradhan AC, Uyar T (2017) Morphological control of mesoporosity and nanoparticles within Co3O4-CuO electrospun nanofibers: quantum confinement and visible light photocatalysis performance. ACS Appl Mater Interfaces 9(41):35757–35774. https://doi.org/10.1021/acsami.7b09026

    Article  CAS  Google Scholar 

  33. Zhou P, Wang Y, Xie C, Chen C, Liu H, Chen R, Huo J, Wang S (2017) Acid-etched layered double hydroxides with rich defects for enhancing the oxygen evolution reaction. Chem Commun (Camb) 53(86):11778–11781. https://doi.org/10.1039/C7CC07186H

    Article  CAS  Google Scholar 

  34. Kanan MW, Yano J, Surendranath Y, DincaYachandraNocera MVKDG (2010) Structure and valency of a cobalt phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J Am Chem Soc 132(39):13692–13701. https://doi.org/10.1021/ja1023767

    Article  CAS  Google Scholar 

  35. Sun Z, Yan W, Yao T, Liu Q, Xie Y, Wei S (2013) XAFS in dilute magnetic semiconductors. Dalton Trans 42(38):13779. https://doi.org/10.1039/c3dt50888a

    Article  CAS  Google Scholar 

  36. Sun Y, Liu Q, Gao S, Cheng H, Lei F, Sun Z, Jiang Y, Su H, Wei S, Xie Y (2013) Pits confined in ultrathin cerium (IV) oxide for studying catalytic centers in carbon monoxide oxidation. Nature Commun 4(1):2899. https://doi.org/10.1038/ncomms3899

    Article  CAS  Google Scholar 

  37. Wu JB, Li ZG, Huang XH, Lin Y (2013) Porous Co3O4/NiO core/shell nanowire array with enhanced catalytic activity for methanol electro-oxidation. J Power Sources 224:1–5. https://doi.org/10.1016/j.jpowsour.2012.09.085

    Article  CAS  Google Scholar 

  38. Yin Z, Zheng Y, Wang H, Li J, Zhu Q, Wang Y, Ma N, Hu G, He B, Knop-Gericke A, Schlogl R, Ma D (2017) Engineering interface with one-dimensional Co3O4 nanostructure in catalytic membrane electrode: toward an advanced electrocatalyst for alcohol oxidation. ACS Nano 11(12):12365–12377. https://doi.org/10.1021/acsnano.7b06287

    Article  CAS  Google Scholar 

  39. Wang Q, Chen L, Guan S, Zhang X, Wang B, Cao X, Yu Z, He Y, Evans DG, Feng J, Li D (2018) Ultrathin and vacancy-rich CoAl-layered double hydroxide/graphite oxide catalysts: promotional effect of cobalt vacancies and oxygen vacancies in alcohol oxidation. ACS Catal 8(4):3104–3115. https://doi.org/10.1021/acscatal.7b03655

    Article  CAS  Google Scholar 

  40. Lu X, Zhao C (2015) Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat Commun 6:6616. https://doi.org/10.1038/ncomms7616

    Article  CAS  Google Scholar 

  41. Gao M, Sheng W, Zhuang Z, Fang Q, Gu S, Jiang J, Yan Y (2014) Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J Am Chem Soc 136(19):7077–7084. https://doi.org/10.1021/ja502128j

    Article  CAS  Google Scholar 

  42. Motheo AJ, Tremiliosi-Filho G, Gonzalez ER, Kokoh KB, Léger JM, Lamy C (2006) Electrooxidation of benzyl alcohol and benzaldehyde on a nickel oxy-hydroxide electrode in a filter-press type cell. J Appl Electrochem 36(9):1035–1041. https://doi.org/10.1007/s10800-006-9156-5

    Article  CAS  Google Scholar 

  43. Farhadi S, Pourzare K, Bazgir S (2014) Co3O4 nanoplates: synthesis, characterization and study of optical and magnetic properties. J Alloys Compd 587:632–637. https://doi.org/10.1016/j.jallcom.2013.10.259

    Article  CAS  Google Scholar 

  44. Kumar RV, Diamant Y, Gedanken A (2000) Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem Mater 12(8):2301–2305. https://doi.org/10.1021/cm000166z

    Article  CAS  Google Scholar 

  45. Gulino A, Dapporto P, Rossi P, Fragalà I (2003) A novel self-generating liquid MOCVD precursor for Co3O4 thin films. Chem Mater 15(20):3748–3752. https://doi.org/10.1021/cm991154k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 2177060378, 21978023, 21627813 and 21521005), the Program for Changjiang Scholars, Innovative Research Teams in Universities (no. IRT1205), and the Fundamental Research Funds for the Central Universities (Nos. 12060093063 and XK1803-05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianggui Kong or Xiaodong Lei.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2981 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Zhang, D., Kong, X. et al. Multi-vacancy Co3O4 on nickel foam synthesized via a one-step hydrothermal method for high-efficiency electrocatalytic benzyl alcohol oxidation. J Mater Sci 56, 6689–6703 (2021). https://doi.org/10.1007/s10853-020-05709-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05709-w

Navigation