Skip to main content

Advertisement

Log in

Ni3S2 nanocrystals in-situ grown on Ni foam as highly efficient electrocatalysts for alkaline hydrogen evolution

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The exploitation of cost-efficient electrocatalysts is critical to develop the hydrogen evolution reaction (HER) for hydrogen production. Herein, Ni3S2/NF-x h (x = 12, 16 and 20, reaction time) nanocrystals in-situ grown on Ni foam (NF) were prepared via a facile hydrothermal method. The results demonstrate that the reaction time plays key roles in the morphology, the hydrogen evolution performance of the samples, and the hydrogen brittleness of NF substrate. Interestingly, the Ni3S2/NF-16 h displays outstanding catalytic activity for HER in alkaline solution and avoids the hydrogen brittleness of the NF skeletons simultaneously. To afford a catalytic current of 20 mA·cm−2, Ni3S2/NF-16 h presents ultra-low overpotential of 48 mV for hydrogen evolution and sufficient stability for 40 h. Moreover, the density functional theory (DFT) calculations revealed that the excellent electrocatalytic HER activity of Ni3S2 could be attributed to its exposed (015) plane, which exhibited good capability for water adsorption and dissociation in an alkaline electrolyte, leading to the optimal free energy for H* adsorption. The present work offers a novel strategy to design, synthesize and develop highly efficient electrocatalysts for HER.

Graphical abstract

摘要

开发低成本、高效益的电催化剂是发展析氢反应制氢的关键。在此基础上,采用水热法原位制备了Ni3S2/NF-x h (x = 12,16和20)纳米晶体。结果表明,反应时间对样品的形貌、析氢性能和泡沫镍基底的氢脆性有重要影响。有趣的是,Ni3S2/NF-16 h在碱性溶液中表现出优异的析氢催化活性,同时避免了泡沫镍骨架的氢脆性。在20 mAcm-2的电流密度下,Ni3S2/NF-16 h展示了48 mV的超低析氢过电位和超过40 h的优异稳定性。此外,密度泛函理论计算表明,Ni3S2优异的电催化析氢反应活性主要可归因于(015)晶面,在碱性电解质中表现出良好的水吸附和解离能力,从而获得最佳的H*吸附自由能。本工作为设计、合成和开发高效的析氢反应催化剂提供了一种新的策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu Z, Feng YH, Qin ZB, Han XP, Zheng XR, Deng YD, Hu WB. Bimetallic multi-level layered Co-NiOOH/Ni3S2@NF nanosheet for hydrogen evolution reaction in alkaline medium. Small. 2022;18(43):2106904. https://doi.org/10.1002/smll.202106904.

    Article  CAS  Google Scholar 

  2. Jin MT, Zhang X, Niu SZ, Wang Q, Huang RQ, Ling RH, Huang JQ, Shi R, Amini A, Cheng C. Strategies for designing high-performance hydrogen evolution reaction electrocatalysts at large current densities above 1000 mA·cm−2. ACS Nano. 2022;16(8):11577. https://doi.org/10.1021/acsnano.2c02820.

    Article  CAS  Google Scholar 

  3. Liu JB, Gong HS, Ye GL, Fei HL. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 2022;41(5):1703. https://doi.org/10.1007/s12598-021-01904-z.

    Article  CAS  Google Scholar 

  4. Guo BY, Zhang XY, Ma X, Chen TS, Wen ML, Yang XL, Qin JF, Chai YM, Nan J, Dong B. RuO2/Co3O4 nanocubes based on Ru ions impregnation into prussian blue precursor for oxygen evolution. Int J Hydrogen Energ. 2020;45(16):9575. https://doi.org/10.1016/j.ijhydene.2020.01.182.

    Article  CAS  Google Scholar 

  5. Wang YQ, Chen S, Zhao SY, Chen QW, Zhang JT. Interfacial coordination assembly of tannic acid with metal ions on three-dimensional nickel hydroxide nanowalls for efficient water splitting. J Mater Chem A. 2020;8(31):15845. https://doi.org/10.1039/D0TA02229B.

    Article  CAS  Google Scholar 

  6. Yu Y, Liu YQ, Peng XL, Liu XC, Xing Y, Xing SX. A multi-shelled CeO2/Co@N-doped hollow carbon microsphere as a trifunctional electrocatalyst for a rechargeable zinc–air battery and overall water splitting. Sustain Energ Fuels. 2020;4(10):5156. https://doi.org/10.1039/D0SE00735H.

    Article  CAS  Google Scholar 

  7. Ding YY, Du XQ, Zhang XS. Cu-doped Ni3S2 interlaced nanosheet arrays as high efficiency electrocatalyst boosting the alkaline hydrogen evolution. Chem Cat Chem. 2021;13(7):1824. https://doi.org/10.1002/cctc.202001838.

    Article  CAS  Google Scholar 

  8. Liu ZP, Zhao L, Liu YH, Gao ZC, Yuan SS, Li XT, Li N, Miao SD. Vertical nanosheet array of 1T phase MoS2 for efficient and stable hydrogen evolution. Appl Catal B-Environ. 2019;246(5):296. https://doi.org/10.1016/j.apcatb.2019.01.062.

    Article  CAS  Google Scholar 

  9. Wu T, Sun MZ, Huang BL. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 2022;41(7):2169. https://doi.org/10.1007/s12598-021-01914-x.

    Article  CAS  Google Scholar 

  10. Chen JP, Zheng JP, He WD, Liang HK, Li Y, Cui H, Wang CX. Self-standing hollow porous Co/a-WOx nanowire with maximum Mott-Schottky effect for boosting alkaline hydrogen evolution reaction. Nano Res. 2022. https://doi.org/10.1007/s12274-022-5072-1.

    Article  Google Scholar 

  11. Dong J, Lv CC, Humphrey MG, Zhang C, Huang ZP. One-dimensional amorphous cobalt(ii) metal–organic framework nanowire for efficient hydrogen evolution reaction. Inorg Chem Front. 2022;9:4184. https://doi.org/10.1039/D2QI00473A.

    Article  CAS  Google Scholar 

  12. Wang XY, You WB, Yang LT, Wu ZC, Zhang C, Chen QJ, Che RC. Enhanced electrocatalytic hydrogen evolution by molybdenum disulfide nanodots anchored on MXene under alkaline conditions. Nanoscale Adv. 2022;4:3398. https://doi.org/10.1039/D2NA00376G.

    Article  CAS  Google Scholar 

  13. Han WW, Zhang F, Qiu LS, Qian Y, Hao SY, Li P, He Y, Zhang XW. Interface engineering of hierarchical NiCoP/NiCoSx heterostructure arrays for efficient alkaline hydrogen evolution at large current density. Nanoscale. 2022;14:15498. https://doi.org/10.1039/D2NR04657A.

    Article  CAS  Google Scholar 

  14. Li XG, Liu C, Fang ZT, Xu L, Lu CL, Hou WH. Improving the hydrogen evolution performance of self-supported hierarchical NiFe layered double hydroxide via NH3-inducing at room temperature. J Mater Chem A. 2022;10:20626. https://doi.org/10.1039/D2TA05953C.

    Article  CAS  Google Scholar 

  15. Feng JX, Qiao LL, Zhou PF, Bai HY, Liu CF, Leong CC, Chen YY, Ip WF, Ni J, Pan H. Nanocrystalline CoOx glass for highly-efficient alkaline hydrogen evolution reaction. J Mater Chem A. 2023;11:316. https://doi.org/10.1039/D2TA08073G.

    Article  CAS  Google Scholar 

  16. Das M, Khan ZB, Biswas A, Dey RS. Inter-electronic interaction between Ni and Mo in electrodeposited Ni–Mo–P on 3D copper foam enables hydrogen evolution reaction at low overpotential. Inorg Chem. 2022;61(45):18253. https://doi.org/10.1021/acs.inorgchem.2c03074.

    Article  CAS  Google Scholar 

  17. Zhang N, Gao Y, Mei YH, Liu J, Song WY, Yu Y. CuS-Ni3S2 grown in situ from three-dimensional porous bimetallic foam for efficient oxygen evolution. Inorg Chem Front. 2019;6:293. https://doi.org/10.1039/C8QI01148F.

    Article  CAS  Google Scholar 

  18. Narasimman R, Waldiya M, Jalaja K, Vemuri SK, Mukhopadhyay I, Ray A. Self-standing, hybrid three-dimensional-porous MoS2/Ni3S2 foam electrocatalyst for hydrogen evolution reaction in alkaline medium. Int J Hydrogen Energ. 2021;46(11):7759. https://doi.org/10.1016/j.ijhydene.2020.12.014.

    Article  CAS  Google Scholar 

  19. Guo HP, Ruan BY, Luo WB, Deng J, Wang JZ, Liu HK, Dou SX. Ultrathin and edge-enriched holey nitride nanosheets as bifunctional electrocatalysts for the oxygen and hydrogen evolution reactions. ACS Catal. 2018;8(10):9686. https://doi.org/10.1021/acscatal.8b01821.

    Article  CAS  Google Scholar 

  20. Zhang SC, Wang WB, Hu FL, Mi Y, Wang SZ, Liu YW, Ai XM, Fang JK, Li HQ, Zhai TY. 2D CoOOH sheet-encapsulated Ni2P into tubular arrays realizing 1000 mA·cm-2 level-current-density hydrogen evolution over 100 h in neutral water. Nano-Micro Lett. 2020;12:140. https://doi.org/10.1007/s40820-020-00476-4.

    Article  CAS  Google Scholar 

  21. Hu Y, Yu B, Li WX, Ramadoss M, Chen YF. W2C nanodot-decorated CNT networks as a highly efficient and stable electrocatalyst for hydrogen evolution in acidic and alkaline media. Nanoscale. 2019;11:4876. https://doi.org/10.1039/C8NR10281C.

    Article  CAS  Google Scholar 

  22. Liu H, Ma X, Rao Y, Liu Y, Liu JL, Wang LY, Wu MB. Heteromorphic NiCo2S4/Ni3S2/Ni foam as a self-standing electrode for hydrogen evolution reaction in alkaline solution. ACS Appl Mater. 2018;10(13):10890. https://doi.org/10.1021/acsami.8b00296.

    Article  CAS  Google Scholar 

  23. Yu ZH, Yao HQ, Yang Y, Yuan MW, Li C, He HY, Chan TS, Yan DP, Ma SL, Zapol P, Kanatzidis MG. MoOxSy/Ni3S2 microspheres on Ni foam as highly efficient, durable electrocatalysts for hydrogen evolution reaction. Chem Mater. 2022;34(2):798. https://doi.org/10.1021/acs.chemmater.1c03682.

    Article  CAS  Google Scholar 

  24. Song SW, Wang YH, Li W, Tian PF, Zhou SY, Gao HW, Tian XQ, Zang ZB. Amorphous MoS2 coated Ni3S2 nanosheets as bifunctional electrocatalysts for high-eficiency overall water splitting. Electrochim Acta. 2020;332(1):135454. https://doi.org/10.1016/j.electacta.2019.135454.

    Article  CAS  Google Scholar 

  25. Kou T, Smart T, Yao B, Chen I, Thota D, Ping Y, Li Y. Theoretical and experimental insight into the effect of nitrogen doping on hydrogen evolution activity of Ni3S2 in alkaline medium. Adv Energy Mater. 2018;8(19):1703538. https://doi.org/10.1002/aenm.201703538.

    Article  CAS  Google Scholar 

  26. Sun J, Chen YR, Huang K, Li K, Wang Q. Interfacial electronic structure and electrocatalytic performance modulation in Cu0.81Ni0.19 nanoflowers by heteroatom doping engineering using ionic liquid dopant. Appl Surf Sci. 2020;500(15):144052. https://doi.org/10.1016/j.apsusc.2019.144052.

    Article  CAS  Google Scholar 

  27. Du X, Su H, Zhang X. Metal-organic framework-derived Cu-doped Co9S8 nanorod array with less low-valence Co sites as highly efficient bifunctional electrodes for overall water splitting. ACS Sustainable Chem Eng. 2019;7(19):16917. https://doi.org/10.1021/acssuschemeng.9b04739.

    Article  CAS  Google Scholar 

  28. He W, Han L, Hao Q, Zheng X, Li Y, Zhang J, Liu C, Liu H, Xin HL. Fluorine-anion-modulated electron structure of nickel sulfide nanosheet arrays for alkaline hydrogen evolution. ACS Energy Lett. 2019;4(12):2905. https://doi.org/10.1021/acsenergylett.9b02316.

    Article  CAS  Google Scholar 

  29. Cao Y, Meng Y, Huang S, He S, Li X, Tong S, Wu M. Nitrogen-, oxygen- and sulfur-doped carbon-encapsulated Ni3S2 and NiS core-shell architectures: bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions. ACS Sustain Chem Eng. 2018;6(11):15582. https://doi.org/10.1021/acssuschemeng.8b04029.

    Article  CAS  Google Scholar 

  30. Qu YJ, Yang MY, Chai JW, Tang Z, Shao MM, Kwok CT, Yang M, Wang ZY, Chua D, Wang SJ, Lu ZG, Pan H. Facile synthesis of vanadium-doped Ni3S2 nanowire arrays as active electrocatalyst for hydrogen evolution reaction. ACS Appl Mater Inter. 2017;9(7):5959. https://doi.org/10.1021/acsami.6b13244.

    Article  CAS  Google Scholar 

  31. Li BL, Li ZS, Pang Q. Controllable preparation of N-doped Ni3S2 nanocubes@N-doped graphene-like carbon layers for highly active electrocatalytic overall water splitting. Electrochim. 2021;399(10):139408. https://doi.org/10.1016/j.electacta.2021.139408.

    Article  CAS  Google Scholar 

  32. Liu YQ, Yu Y, Mu ZC, Wang YH, Ali U, Jing SY, Xing SX. Urea-assisted enhanced electrocatalytic activity of MoS2-Ni3S2 for overall water splitting. Inorg Chem Front. 2020;7(19):3588. https://doi.org/10.1039/D0QI00634C.

    Article  CAS  Google Scholar 

  33. Yang MQ, Wang J, Wu H, Ho GW. Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small. 2018;14(15):1703323. https://doi.org/10.1002/smll.201703323.

    Article  CAS  Google Scholar 

  34. Yang WQ, Zeng JR, Hua YX, Xu CY, Siwal SS, Zhang QB. Defect engineering of cobalt microspheres by S doping and electrochemical oxidation as efficient bifunctional and durable electrocatalysts for water splitting at high current densities. J Power Sources. 2019;436(1):226887. https://doi.org/10.1016/j.jpowsour.

    Article  CAS  Google Scholar 

  35. He WJ, Zhang R, Zhang JY, Wang FQ, Li Y, Zhao JL, Chen C, Liu H, Xin HLL. Promoting the water dissociation of nickel sulfide electrocatalyst through introducing cationic vacancies for accelerated hydrogen evolution kinetics in alkaline media. J Catal. 2022;410:112. https://doi.org/10.1016/j.jcat.2022.04.009.

    Article  CAS  Google Scholar 

  36. Feng LL, Yu GT, Wu YY, Li GD, Li H, Sun YH, Asefa T, Chen T, Zou XX. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J Am Chem Soc. 2015;137(44):14023. https://doi.org/10.1021/jacs.5b08186.

    Article  CAS  Google Scholar 

  37. Zeng LY, Sun KA, Yang ZC, Xie SL, Chen YJ, Liu Z, Liu YQ, Zhao JC, Liu YQ, Liu CG. Tunable 3D hierarchical Ni3S2 superstructures as efficient and stable bifunctional electrocatalysts for both H2 and O2 generations. J Mater Chem A. 2018;6(10):4485. https://doi.org/10.1039/C7TA10790K.

    Article  CAS  Google Scholar 

  38. Li LJ, Sun CY, Shang B, Li Q, Lei JL, Li NB, Pan FS. Tailoring the facets of Ni3S2 as a bifunctional electrocatalyst for high-performance overall water-splitting. J Mater Chem A. 2019;7(30):18003. https://doi.org/10.1039/C9TA05578A.

    Article  CAS  Google Scholar 

  39. Wei RJ, Fang M, Dong GF, Lan CY, Shu L, Zhang H, Bu XM, Ho JC. High-index faceted porous Co3O4 nanosheets with oxygen vacancies for highly efficient water oxidation. ACS Appl Mater. 2018;10(8):7079. https://doi.org/10.1021/acsami.7b18208.

    Article  CAS  Google Scholar 

  40. Chen PZ, Zhou TP, Zhang MX, Tong Y, Zhong CG, Zhang N, Zhang LD, Wu CZ, Xie Y. 3D nitrogen-anion-decorated nickel sulfides for highly efficient overall water splitting. Adv Mater. 2017;29(30):1701584. https://doi.org/10.1002/adma.201701584.

    Article  CAS  Google Scholar 

  41. Liu X, Li YX, Chen N, Deng DY, Xing XX, Wang YD. Ni3S2@Ni foam 3D electrode prepared via chemical corrosion by sodium sulfide and using in hydrazine electro-oxidation. Electrochim. 2016;213(20):730. https://doi.org/10.1016/j.electacta.2016.08.009.

    Article  CAS  Google Scholar 

  42. Xu H, Liao Y, Gao ZF, Qing Y, Wu YQ, Xia LY. Branch-like Mo-doped Ni3S2 nanoforest as high-efficiency and durable catalyst for overall urea electrolysis. J Mater Chem A. 2021;9:3418. https://doi.org/10.1039/D0TA09423D.

    Article  CAS  Google Scholar 

  43. Shang X, Hu WH, Han GQ, Liu ZZ, Dong B, Liu YR, Li X, Chai M, Liu CG. Crystalline phase-function relationship of in situ growth NixSy controlled by sulfuration degree for oxygen evolution reaction. Int J Hydrogen Energ. 2016;41(30):13032. https://doi.org/10.1016/j.ijhydene.2016.04.153.

    Article  CAS  Google Scholar 

  44. Yang YQ, Zhang K, Lin HL, Li X, Chan HC, Yang LC, Gao QS. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017;7(4):2357. https://doi.org/10.1021/acscatal.6b03192.

    Article  CAS  Google Scholar 

  45. Wang JJ, Zeng HC. A hybrid electrocatalyst with a coordinatively unsaturated metal–organic framework shell and hollow Ni3S2/NiS core for oxygen evolution reaction applications. ACS Appl Mater. 2019;11(26):23180. https://doi.org/10.1021/acsami.9b04479.

    Article  CAS  Google Scholar 

  46. Sun R, Zhao ZF, Su ZH, Li TS, Zhao JX, Shang YC. Multi-interface MoS2/Ni3S4/Mo2S3 composite as an efficient electrocatalyst for hydrogen evolution reaction over a wide pH range. Dalton Trans. 2022;51(17):6825. https://doi.org/10.1039/D2DT00231K.

    Article  CAS  Google Scholar 

  47. Dinda D, Ahmed ME, Mandal S, Mondal B, Saha SK. Amorphous molybdenum sulfide quantum dots: an efficient hydrogen evolution electrocatalyst in neutral medium. J Mater Chem A. 2016;4(40):15486. https://doi.org/10.1039/C6TA06101J.

    Article  CAS  Google Scholar 

  48. Lin JH, Wang PC, Wang HH, Li C, Si XQ, Qi JL, Cao J, Zhong ZX, Fei WD, Feng JC. Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Adv Sci. 2019;6(14):1900246. https://doi.org/10.1002/advs.201900246.

    Article  CAS  Google Scholar 

  49. Zhou WJ, Wu XJ, Cao XH, Huang X, Tan CL, Tian J, Liu H, Wang JY, Zhang H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. 2013;6(10):2921. https://doi.org/10.1039/C3EE41572D.

    Article  CAS  Google Scholar 

  50. Qin HY, Zhang B, Pan YP, Wang XX, Diao LC, Chen J, Wu JL, Liu EZ, Sha JW, Ma LY, Zhao NQ. Accelerating water dissociation kinetics on Ni3S2 nanosheets by P-induced electronic modulation. J Catal. 2020;381:493. https://doi.org/10.1016/j.jcat.2019.11.018.

    Article  CAS  Google Scholar 

  51. Gao Y, Li JJ, Gong H, Zhang CX, Fan HY, Xie X, Huang XL, Xue HR, Wang T, He JP. The identified intrinsic active sites for efficient and stable bi-functional catalyst N-MoS2·Ni3S2/NiS: the Mo-N structure and Ni-S structure on the heterogeneous interface synergistically enhance water splitting. J Mater Chem A. 2022;10(21):11755. https://doi.org/10.1039/D2TA01333A.

    Article  CAS  Google Scholar 

  52. Ji XF, Cheng CQ, Zang ZH, Li LL, LiX CYH, Yang XJ, Yu XF, Lu ZM, Zhang XH, Liu H. Ultrathin and porous δ-FeOOH modified Ni3S2 3D heterostructure nanosheets with excellent alkaline overall water splitting performance. J Mater Chem A. 2020;8(40):21199. https://doi.org/10.1039/D0TA07676G.

    Article  CAS  Google Scholar 

  53. Wang K, Yan LQ, Mu XM, Feng B, Lv KY, Yu XF, Li LL, Zhang XH, Yang XJ, Lu ZM. One-step hydrothermal synthesis of Mo-doped Ni3S2 nanorods for efficient hydrogen evolution reaction. ACS Appl Energy Mater. 2022;5(9):11498. https://doi.org/10.1021/acsaem.2c01965.

    Article  CAS  Google Scholar 

  54. Anantharaj S, Ede SR, Karthick K, Sam Sankar S, Sangeetha K, Karthik PE, Kundu S. Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ Sci. 2018;11(4):744. https://doi.org/10.1039/C7EE03457A.

    Article  CAS  Google Scholar 

  55. Merki D, Fierro S, Vrubel H, Hu X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci. 2011;2:1262. https://doi.org/10.1039/C1SC00117E.

    Article  CAS  Google Scholar 

  56. Tian J, Liu Q, Asiri AM, Sun X. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc. 2014;136(21):7587. https://doi.org/10.1021/ja503372r.

    Article  CAS  Google Scholar 

  57. Wang KF, Li B, Ren JX, Chen WX, Cui JH, Wei W, Qu P. Ru@Ni3S2 nanorod arrays as highly efficient electrocatalysts for the alkaline hydrogen evolution reaction. Inorg Chem Front. 2022;9(13):3885. https://doi.org/10.1039/D2QI00673A.

    Article  CAS  Google Scholar 

  58. Zhou Y, Li TT, Xi SQ, He C, Yang XG, Wu HJ. One-step synthesis of self-standing Ni3S2/Ni2P heteronanorods on nickel foam for efficient electrocatalytic hydrogen evolution over a wide pH range. ChemCatChem. 2018;10(23):5487. https://doi.org/10.1002/cctc.201801373.

    Article  CAS  Google Scholar 

  59. Cui H, Zhang M, Zhao YX, Hu S. Heterogenization of few-layer MoS2 with highly crystalline 3D Ni3S2 nanoframes effectively synergizes the electrocatalytic hydrogen generation in alkaline medium. Mater Today Energy. 2019;13:85. https://doi.org/10.1016/j.mtener.2019.05.001.

    Article  Google Scholar 

  60. Tong MM, Wang L, Yu P, Tian CG, Liu X, Zhou W, Fu HG. Ni3S2 nanosheets in-situ epitaxially grown on nanorods as high active and stable homojunction electrocatalyst for hydrogen evolution reaction. ACS Sustain Chem Eng. 2018;6(2):2474. https://doi.org/10.1021/acssuschemeng.7b03915.

    Article  CAS  Google Scholar 

  61. Huang HW, Yu C, Zhao CT, Han XT, Yang J, Liu ZB, Li SF, Zhang MD, Qiu JS. Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting. Nano Energy. 2017;34:472. https://doi.org/10.1016/j.nanoen.2017.03.016.

    Article  CAS  Google Scholar 

  62. Yao N, Li P, Zhou ZR, Zhao YM, Cheng GZ, Chen SL, Luo W. Synergistically tuning water and hydrogen binding abilities over Co4N by Cr doping for exceptional alkaline hydrogen evolution electrocatalysis. Adv Energy Mater. 2019;9(41):1902449. https://doi.org/10.1002/aenm.201902449.

    Article  CAS  Google Scholar 

  63. Zheng XN, Yao Y, Ye W, Gao P, Liu Y. Building up bimetallic active sites for electrocatalyzing hydrogen evolution reaction under acidic and alkaline conditions. Chem Eng J. 2021;413:128027. https://doi.org/10.1016/j.cej.2020.128027.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Project of Talent Recruitment of Guangdong University of Petrochemical Technology (Nos. 2019rc052 and 2019rc054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Feng Zhao or Jing-Xiang Zhao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 110669 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Su, ZH., Zhao, ZF. et al. Ni3S2 nanocrystals in-situ grown on Ni foam as highly efficient electrocatalysts for alkaline hydrogen evolution. Rare Met. 42, 3420–3429 (2023). https://doi.org/10.1007/s12598-023-02337-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02337-6

Keywords

Navigation