Skip to main content
Log in

Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-capacity lithium-containing alloy anodes (e.g., Li4.4Si, Li4.4Sn, and Li3P) enable lithium-free cathodes (e.g., Sulfur, V2O5, and FeF3) to produce next-generation lithium-ion batteries (LIBs) with high energy density. Herein, we design a Li3P/C nanocomposite with Li3P ultrafine nanodomains embedded in micrometer-scale porous carbon particles. Benefiting from the unique micro/nanostructure of the Li3P/C nanocomposite, electrons transfer rapidly through the conductive pathway provided by the porous carbon framework and the volume change between Li3P and P is confined in the nanopores of the carbon, which avoids the collapse of the whole Li3P/C composite particles. As expected, the as-achieved Li3P/C nanocomposite provided a high available lithium-ion capacity of 791 mAh/g (calculated based on the mass of Li3P/C) at 0.1 C during the initial delithiation process. Meanwhile, the Li3P/C nanocomposite showed 75% of its 0.5 C capacity at 6 C and stable cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, J.; Chen, Z. W.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev.2018, 1, 35–53.

    Article  CAS  Google Scholar 

  2. Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater.2017, 16, 16–22.

    Article  Google Scholar 

  3. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science2011, 334, 928–935.

    Article  CAS  Google Scholar 

  4. Armand, M.; Tarascon, J. M. Building better batteries. Nature2008, 451, 652–657.

    Article  CAS  Google Scholar 

  5. Manthiram, A. An outlook on lithium ion battery technology. ACS Central Sci.2017, 3, 1063–1069.

    Article  CAS  Google Scholar 

  6. Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater.2016, 1, 16013.

    Article  CAS  Google Scholar 

  7. Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev.2014, 114, 11414–11443.

    Article  CAS  Google Scholar 

  8. Yan, P. F.; Zheng, J. M.; Liu, J.; Wang, B. Q.; Cheng, X. P.; Zhang, Y. F.; Sun, X. L.; Wang, C. M.; Zhang, J. G. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy2018, 3, 600–605.

    Article  CAS  Google Scholar 

  9. Liu, Q.; Su, X.; Lei, D.; Qin, Y.; Wen, J. G.; Guo, F. M.; Wu, Y. A.; Rong, Y. C.; Kou, R. H.; Xiao, X. H. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy2018, 3, 936–943.

    Article  CAS  Google Scholar 

  10. Sander, J. S.; Erb, R. M.; Li, L.; Gurijala, A.; Chiang, Y. M. High-performance battery electrodes via magnetic templating. Nat. Energy2016, 1, 16099.

    Article  CAS  Google Scholar 

  11. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater.2009, 8, 500–506.

    Article  CAS  Google Scholar 

  12. Chen, X. Y.; Zhu, H. L.; Chen, Y. C.; Shang, Y. Y.; Cao, A. Y.; Hu, L. B.; Rubloff, G. W. Mwcnt/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. ACS Nano2012, 6, 7948–7955.

    Article  CAS  Google Scholar 

  13. Li, H.; Balaya, P.; Maier, J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc.2004, 151, A1878.

    Article  CAS  Google Scholar 

  14. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev.2017, 117, 10403–10473.

    Article  CAS  Google Scholar 

  15. Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy2016, 1, 16071.

    Article  CAS  Google Scholar 

  16. Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol.2014, 9, 618–623.

    Article  CAS  Google Scholar 

  17. Liu, J.; Bao, Z.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy2019, 4, 180–186.

    Article  CAS  Google Scholar 

  18. Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol.2017, 12, 194–206.

    Article  CAS  Google Scholar 

  19. Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy2018, 3, 16–21.

    Article  CAS  Google Scholar 

  20. Wang, C.; Yu, J. M.; Li, S. H.; Lu, Z. D. Boosting the cycling stability of Li Si alloy microparticles through electroless copper deposition. Chem. Eng. J.2019, 370, 1019–1026.

    Article  CAS  Google Scholar 

  21. Jiang, M. W.; Yu, Y.; Fan, H. M.; Xu, H.; Zheng, Y. H.; Huang, Y. H.; Li, S.; Li, J. Full-cell cycling of a self-supporting aluminum foil anode with a phosphate conversion coating. ACS Appl. Mater. Interfaces2019, 11, 15656–15661.

    Article  CAS  Google Scholar 

  22. Xu, H.; Li, S.; Chen, X. L.; Zhang, C.; Liu, W. J.; Fan, H. M.; Yu, Y.; Huang, Y. H.; Li, J. Sn-alloy foil electrode with mechanical prelithiation: Full-cell performance up to 200 cycles. Adv. Energy Mater.2019, 9, 1902150.

    Article  CAS  Google Scholar 

  23. Xu, H.; Li, S.; Zhang, C.; Chen, X. L.; Liu, W. J.; Zheng, Y. H.; Xie, Y.; Huang, Y. H.; Li, J. Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy Environ. Sci.2019, 12, 2991–3000.

    Article  CAS  Google Scholar 

  24. Zhao, J.; Zhou, G. M.; Yan, K.; Xie, J.; Li, Y. Z.; Liao, L.; Jin, Y.; Liu, K.; Hsu, P. C.; Wang, J. Y. et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat. Nanotechnol.2017, 12, 993–999.

    Article  CAS  Google Scholar 

  25. Corbridge, D. E. C. Phosphorus: Chemistry, Biochemistry and Technology; 6th ed. CRC Press: Boca Raton, FL, 2013.

    Google Scholar 

  26. Sun, J.; Zheng, G. Y.; Lee, H. W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett.2014, 14, 4573–4580.

    Article  CAS  Google Scholar 

  27. Qian, J. F.; Qiao, D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun.2012, 48, 8931–8933.

    Article  CAS  Google Scholar 

  28. Wang, L.; He, X. M.; Li, J. J.; Sun, W. T.; Gao, J.; Guo, J. W.; Jiang, C. Y. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem., Int. Ed.2012, 51, 9034–9037.

    Article  CAS  Google Scholar 

  29. Li, W. H.; Yang, Z. Z.; Li, M. S.; Jiang, Y.; Wei, X.; Zhong, X. W.; Gu, L.; Yu, Y. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett.2016, 16, 1546–1553.

    Article  CAS  Google Scholar 

  30. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol.2008, 3, 31–35.

    Article  CAS  Google Scholar 

  31. Ohzuku, T.; Iwakoshi, Y.; Sawai, K. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J. Electrochem. Soc.1993, 140, 2490–2498.

    Article  CAS  Google Scholar 

  32. Liu, Q. Q.; Du, C. Y.; Shen, B.; Zuo, P. J.; Cheng, X. Q.; Ma, Y. L.; Yin, G. P.; Gao, Y. Z. Understanding undesirable anode lithium plating issues in lithium-ion batteries. RSC Adv.2016, 6, 88683–88700.

    Article  CAS  Google Scholar 

  33. Li, W.; Liu, J.; Zhao, D. Y. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater.2016, 1, 16023.

    Article  CAS  Google Scholar 

  34. Sun, Y. M.; Wang, L.; Li, Y. B.; Li, Y. Z.; Lee, H. R.; Pei, A.; He, X. M.; Cui, Y. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density. Joule2019, 3, 1080–1093.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51802105) and Innovation Fund of Wuhan National Laboratory for Optoelectronics. E. M. acknowledges support from the Fundamental Research Funds for the Central Universities (HUST: 2019JYCXJJ014). The authors would like to thank the Analytical and Testing Center of Huazhong University of Science and Technology as well as the Center for Nanoscale Characterization & Devices of Wuhan National Laboratory for Optoelectronics for providing the facilities to conduct the characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wang or Yongming Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, E., Wang, W., Wan, M. et al. Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Res. 13, 1122–1126 (2020). https://doi.org/10.1007/s12274-020-2756-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2756-2

Keywords

Navigation