Skip to main content
Log in

Revisiting the preparation of titanium dioxide: aerosol-assisted production of photocatalyst with higher catalytic activity than P25

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This research revisited the preparation of the pure titanium dioxide. Through the aerosol-assisted technology and our self-made setup, a kind of titanium dioxide with higher activity than commercial product P25 was successfully fabricated, while this aerosol-assisted process takes only about 10 s. By adjusting the operation temperature, the obtained titanium dioxide nanoparticles have different crystalline sizes and phase compositions, which are two major factors determining the catalytic activity of the materials. The results show that the optimum temperature was 600 °C, and the AST-600 particle prepared under this condition has the rate constant at 1.49 in the removal of methyl orange, which is 2.36 times that of Degussa P25. Although the AST-600 particle could only be activated by UV light similar to P25, the efficiency of AST-600/g-C3N4 is higher than that of P25/g-C3N4 under the visible condition. Meanwhile, the as-prepared titanium dioxide particles have been thoroughly characterized by TEM, SEM, XRD, PL, XPS, DRS, Raman and nitrogen adsorption in the study. Hence, we prepared a pure titanium dioxide with higher catalytic activity than P25, but the process is still very convenient, low cost and easy to scale up, holding great potential as an alternative to commercial product P25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chen J, Zhan J, Zhang Y, Tang Y (2019) Construction of a novel ZnCo2O4/Bi2O3 heterojunction photocatalyst with enhanced visible light photocatalytic activity. Chin Chem Lett 30(3):735–738

    Article  CAS  Google Scholar 

  2. Nasirian M, Mehrvar M (2018) Photocatalytic degradation of aqueous Methyl Orange using nitrogen-doped TiO2 photocatalyst prepared by novel method of ultraviolet-assisted thermal synthesis. Journal of Environmental Sciences 66:81–93

    Article  Google Scholar 

  3. Lu L, Shan R, Shi Y, Wang S, Yuan H (2019) A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange. Chemosphere 222:391–398

    Article  CAS  Google Scholar 

  4. Wu Z, Xiong F, Wang Z, Huang W (2018) Thermal-, photo-and electron-induced reactivity of hydrogen species on rutile TiO2 (110) surface: role of oxygen vacancy. Chin Chem Lett 29(6):752–756

    Article  CAS  Google Scholar 

  5. Wang F, Kan Z, Cao F, Guo Q, Xu Y, Qi C, Li C (2018) Synergistic effects of CdS in sodium titanate based nanostructures for hydrogen evolution. Chin Chem Lett 29(9):1417–1420

    Article  CAS  Google Scholar 

  6. Neykova N, Chang YY, Buryi M (2019) Study of ZnO nanorods grown under UV irradiation. Appl Surf Sci 472:105–111

    Article  CAS  Google Scholar 

  7. Zhang B, Guo Z, Zuo Z, Pan W, Zhang J (2018) The ensemble effect of nitrogen doping and ultrasmall SnO2 nanocrystals on graphene sheets for efficient electroreduction of carbon dioxide. Appl Catal B 239:441–449

    Article  CAS  Google Scholar 

  8. Liang L, Yin J, Bao J, Cong L, Huang W, Lin H (2019) Preparation of Au nanoparticles modified TiO2 nanotube array sensor and its application as chemical oxygen demand sensor. Chin Chem Lett 30(1):167–170

    Article  CAS  Google Scholar 

  9. Jaeger V, Wilson W, Subramanian VR (2011) Photodegradation of methyl orange and 2, 3-butanedione on titanium-dioxide nanotube arrays efficiently synthesized on titanium coils. Appl Catal B 110:6–13

    Article  CAS  Google Scholar 

  10. Qian Y, Du J, Kang DJ (2019) Enhanced electrochemical performance of porous Co-doped TiO2 nanomaterials prepared by a solvothermal method. Microporous Mesoporous Mater 273:148–155

    Article  CAS  Google Scholar 

  11. Gao Y, Wang L, Zhou A, Li Z, Chen J, Bala H, Hu Q (2015) Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater Lett 150:62–64

    Article  CAS  Google Scholar 

  12. Kaviyarasan K, Vinoth V, Sivasankar T, Asiri AM, Wu JJ, Anandan S (2019) Photocatalytic and photoelectrocatalytic performance of sonochemically synthesized Cu2O@ TiO2 heterojunction nanocomposites. Ultrason Sonochem 51:223–229

    Article  CAS  Google Scholar 

  13. Thompson WA, Perier C, Maroto-Valer MM (2018) Systematic study of sol-gel parameters on TiO2 coating for CO2 photoreduction. Appl Catal B 238:136–146

    Article  CAS  Google Scholar 

  14. Sung J, Shin M, Deshmukh PR, Hyun HS, Sohn Y, Shin WG (2018) Preparation of ultrathin TiO2 coating on boron particles by thermal chemical vapor deposition and their oxidation-resistance performance. J Alloy Compd 767:924–931

    Article  CAS  Google Scholar 

  15. Li W, Shang C, Li X (2015) A one-step thermal decomposition method to prepare anatase TiO2 nanosheets with improved adsorption capacities and enhanced photocatalytic activities. Appl Surf Sci 357:2223–2233

    Article  CAS  Google Scholar 

  16. Kumar S, Isaacs MA, Trofimovaite R, Durndell L, Parlett CM, Douthwaite RE, Lee AF (2017) P25@ CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction. Appl Catal B 209:394–404

    Article  CAS  Google Scholar 

  17. Shi Q, Li Z, Chen L, Zhang X, Han W, Xie M, Jing L (2019) Synthesis of SPR Au/BiVO4 quantum dot/rutile-TiO2 nanorod array composites as efficient visible-light photocatalysts to convert CO2 and mechanism insight. Appl Catal B 244:641–649

    Article  CAS  Google Scholar 

  18. Nguyen CH, Fu CC, Juang RS (2018) Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways. J Clean Prod 202:413–427

    Article  CAS  Google Scholar 

  19. Low J, Cheng B, Yu J (2017) Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci 392:658–686

    Article  CAS  Google Scholar 

  20. Zhan J, Zheng T, Piringer G, Day C, McPherson G, Lu Y, John VT (2008) Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environ Sci Technol 42(23):8871–8876

    Article  CAS  Google Scholar 

  21. Qu H, Zhang X, Zhan JJ, Sun WQ, Si ZC (2018) Biomass-based nitrogen-doped hollow carbon nanospheres derived directly from glucose and glucosamine: structural evolution and supercapacitor properties. ACS Sustain Chem Eng 6(6):7380–7389

    Article  CAS  Google Scholar 

  22. Li WG, Hu YJ, Jiang H, Li CZ (2019) Aerosol spray pyrolysis synthesis of porous anatase TiO2 microspheres with tailored photocatalytic activity. Acta Metall Sin (Engl Lett) 32(3):286–296

    Article  CAS  Google Scholar 

  23. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) Morphology of a TiO2 photocatalyst (Degussa, P25) consisting of anatase and rutile crystalline phases. J Catal 203(1):82–86

    Article  CAS  Google Scholar 

  24. Senthil RA, Theerthagiri J, Selvi A, Madhavan J (2017) Synthesis and characterization of low-cost g-C3N4/TiO2 composite with enhanced photocatalytic performance under visible-light irradiation. Opt Mater 64:533–539

    Article  CAS  Google Scholar 

  25. Huang H, Song Y, Li N, Chen D, Xu Q, Li H, Lu J (2019) One-step in situ preparation of N-doped TiO2 @ C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation. Appl Catal B 251:154–161

    Article  CAS  Google Scholar 

  26. Radoičić M, Ćirić-Marjanović G, Spasojević V, Ahrenkiel P, Mitrić M, Novaković T, Šaponjić Z (2017) Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites. Appl Catal B 213:155–166

    Article  Google Scholar 

  27. Sengele A, Robert D, Keller N, Colbeau-Justin C, Keller V (2019) Sn-doped and porogen-modified TiO2 photocatalyst for solar light elimination of sulfure diethyle as a model for chemical warfare agent. Appl Catal B 245:279–289

    Article  CAS  Google Scholar 

  28. Dubey RS (2018) Temperature-dependent phase transformation of TiO2 nanoparticles synthesized by sol-gel method. Mater Lett 215:312–317

    Article  CAS  Google Scholar 

  29. Mohtor NH, Othman MHD, Bakar SA, Kurniawan TA, Dzinun H, Norddin MNAM, Rajis Z (2018) Synthesis of nanostructured titanium dioxide layer onto kaolin hollow fibre membrane via hydrothermal method for decolourisation of reactive black 5. Chemosphere 208:595–605

    Article  CAS  Google Scholar 

  30. Han E, Vijayarangamuthu K, Youn JS, Park YK, Jung SC, Jeon KJ (2018) Degussa P25 TiO2 modified with H2O2 under microwave treatment to enhance photocatalytic properties. Catal Today 303:305–312

    Article  CAS  Google Scholar 

  31. Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2014) Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films. Scientific reports 4:4043

    Article  Google Scholar 

  32. Guo H, Jiang N, Wang H, Shang K, Lu N, Li J, Wu Y (2019) Enhanced catalytic performance of graphene-TiO2 nanocomposites for synergetic degradation of fluoroquinolone antibiotic in pulsed discharge plasma system. Appl Catal B 248:552–566

    Article  CAS  Google Scholar 

  33. Huang X, Wang L, Zhou J, Gao N (2014) Photocatalytic decomposition of bromate ion by the UV/P25-Graphene processes. Water Res 57:1–7

    Article  CAS  Google Scholar 

  34. Wang T, Zhang Y, Pan JH, Li BR, Wu LG, Jiang BQ (2019) Hydrothermal reduction of commercial P25 photocatalysts to expand their visible-light response and enhance their performance for photodegrading phenol in high-salinity wastewater. Appl Surf Sci 480:896–904

    Article  CAS  Google Scholar 

  35. Kobayakawa K, Nakazawa Y, Ikeda M, Sato Y, Fujishima A (1990) Influence of the density of surface hydroxyl groups on TiO2 photocatalytic activities. Ber Bunsenges Phys Chem 94(12):1439–1443

    Article  CAS  Google Scholar 

  36. Jaeger CD, Bard AJ (1979) Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems. J Phys Chem 83(24):3146–3152

    Article  CAS  Google Scholar 

  37. Yin S, Komatsu M, Zhang Q, Saito F, Sato T (2007) Synthesis of visible-light responsive nitrogen/carbon doped titania photocatalyst by mechanochemical doping. J Mater Sci 42(7):2399–2404

    Article  CAS  Google Scholar 

  38. Bickley RI, Gonzalez-Carreno T, Lees JS, Palmisano L, Tilley RJ (1991) A structural investigation of titanium dioxide photocatalysts. J Solid State Chem 92(1):178–190

    Article  CAS  Google Scholar 

  39. Fang W, Qin Z, Liu J, Wei Z, Jiang Z, Shangguan W (2018) Photo-switchable pure water splitting under visible light over nano-Pt@ P25 by recycling scattered photons. Appl Catal B 236:140–146

    Article  CAS  Google Scholar 

  40. Dodoo-Arhin D, Buabeng FP, Mwabora JM, Amaniampong PN, Agbe H, Nyankson E, Asiedu NY (2018) The effect of titanium dioxide synthesis technique and its photocatalytic degradation of organic dye pollutants. Heliyon 4(7):e00681

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, Nos. 21876022, 31400840) and PetroChina Innovation Foundation (2017D-5007-0609).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Zhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, Z., Zhang, X., Liu, Y. et al. Revisiting the preparation of titanium dioxide: aerosol-assisted production of photocatalyst with higher catalytic activity than P25. J Mater Sci 55, 565–576 (2020). https://doi.org/10.1007/s10853-019-03950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03950-6

Navigation