Skip to main content

Advertisement

Log in

Nanoscale/microscale porous graphene-like sheets derived from different tissues and components of cane stalk for high-performance supercapacitors

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Different biomass components have different effects on the microstructures and physicochemical properties of biocarbons. And the properties of biocarbons still need to be further improved. Nanoscale/microscale graphene-like sheets are synthesized with KOH as micropore-forming agent, \(\hbox{Fe}(\hbox{NO}_{3})_{3}\cdot \hbox{9}\,\hbox{H}_{2}\hbox{O}\) as mesopore-forming agent and graphite catalyst. It is systematically researched to get the effects of biomass components on them. Cane sugar can form flat graphene-like nanosheets with high conductivity. Their performance drops sharply at \(100\,\hbox{A g}^{-1}\), indicating that biocarbons need a support of carbon skeleton to operate normally at high current density. Bagasse pith contains amount of cellulose and hemicellulose, which are good for forming pores. Bagasse pith-derived graphene-like sheets possess large specific surface area (\(2923.58\,\hbox{m}^{2}\,\hbox{g}^{-1}\)), high specific capacitance (\(514.14\,\hbox{F g}^{-1}\) at \(0.3\,\hbox{A g}^{-1}\) and \(372.57\,\hbox{F g}^{-1}\) at \(100\,\hbox{A g}^{-1}\)) and high energy density. Due to homogeneous coated doping with graphene-like nanosheets, sugarcane pith-derived graphene-like sheets possess low impedance (\(\text{R}_{\mathrm{s}}=0.02\,\Omega \)), high rate capability (maintained 82.34% from 0.3 to \(100\,\hbox{A g}^{-1}\)) and high cycling stability (maintained 101.51% after 5000 cycles), which is better than lots of graphene doping. Sugarcane skin contains more lignin which has hexagonal carbon rings. The graphitization extent of sugarcane skin-derived graphene-like sheets is significantly high. The results provide references to select carbon precursors, and show a novel graphene-like doping method which is suitable for different materials and various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Men B, Guo P, Sun Y, Tang Y, Chen Y, Pan J, Wan P (2019) High-performance nitrogen-doped hierarchical porous carbon derived from cauliflower for advanced supercapacitors. J Mater Sci 54(3):2446–2457. https://doi.org/10.1007/s10853-018-2979-8

    Article  CAS  Google Scholar 

  2. Gao Z, Chen C, Chang J, Chen L, Wang P, Wu D, Xu F, Jiang K (2018) Porous \(\text{Co }_{3}\text{S }_{4}\)@ \(\text{Ni }_{3}\text{S }_{4}\) heterostructure arrays electrode with vertical electrons and ions channels for efficient hybrid supercapacitor. Chem Eng J 343:572–582

    Article  CAS  Google Scholar 

  3. Sun Q, Li Y, He T (2019) The excellent capacitive capability for N, P-doped carbon microsphere/reduced graphene oxide nanocomposites in \(\text{H}_{2}\text{SO}_{4}\)/KI redox electrolyte. J Mater Sci 54(10):7665–7678. https://doi.org/10.1007/s10853-019-03414-x

    Article  CAS  Google Scholar 

  4. Mao N, Wang H, Sui Y, Cui Y, Pokrzywinski J, Shi J, Liu W, Chen S, Wang X, Mitlin D (2017) Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading. Nano Res 10(5):1767–1783

    Article  CAS  Google Scholar 

  5. Liu M, Liu L, Zhang Y, Yu Y, Chen A (2019) Synthesis of n-doped mesoporous carbon by silica assistance as electrode for supercapacitor. J Mater Sci Mater Electron 30(4):3214–3221

    Article  CAS  Google Scholar 

  6. Ren M, Zhang T, Wang Y, Jia Z, Cai J (2019) A highly pyridinic N-doped carbon from macroalgae with multifunctional use toward \(\text{CO}_{2}\) capture and electrochemical applications. J Mater Sci 54(2):1606–1615. https://doi.org/10.1007/s10853-018-2927-7

    Article  CAS  Google Scholar 

  7. Gunasekaran SS, Elumalali SK, Kumaresan TK, Meganathan R, Ashok A, Pawar V, Vediappan K, Ramasamy G, Karazhanov SZ, Raman K et al (2018) Partially graphitic nanoporous activated carbon prepared from biomass for supercapacitor application. Mater Lett 218:165–168

    Article  CAS  Google Scholar 

  8. Zhang W, Xu J, Hou D, Yin J, Liu D, He Y, Lin H (2018) Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. J Colloid Interface Sci 530:338–344

    Article  CAS  Google Scholar 

  9. Wang Y, Zhao Z, Song W, Wang Z, Wu X (2019) From biological waste to honeycomb-like porous carbon for high energy density supercapacitor. J Mater Sci 54(6):4917–4927. https://doi.org/10.1007/s10853-018-03215-8

    Article  CAS  Google Scholar 

  10. Jadhav S, Kalubarme RS, Terashima C, Kale BB, Godbole V, Fujishima A, Gosavi SW (2019) Manganese dioxide/reduced graphene oxide composite an electrode material for high-performance solid state supercapacitor. Electrochim Acta 299:34–44

    Article  CAS  Google Scholar 

  11. Xia J, Zhang N, Chong S, Chen Y, Sun C et al (2018) Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor. Green Chem 20(3):694–700

    Article  CAS  Google Scholar 

  12. Jia H, Wang Z, Li C, Si X, Zheng X, Cai Y, Lin J, Liang H, Qi J, Cao J et al (2019) Designing oxygen bonding between reduced graphene oxide and multishelled \(\text{Mn}_{3}\text{O}_{4}\) hollow spheres for enhanced performance of supercapacitors. J Mater Chem A 7:6686–6694

    Article  CAS  Google Scholar 

  13. Guo L, Xu Y, Zhuo M, Liu L, Xu Q, Wang L, Shi C, Ye B, Fan X, Chen W (2018) Highly efficient removal of Gd (III) using hybrid hydrosols of carbon nanotubes/graphene oxide in dialysis bags and synergistic enhancement effect. Chem Eng J 348:535–545

    Article  CAS  Google Scholar 

  14. Li L, San Hui K, Hui KN, Zhang T, Fu J, Cho YR (2018) High-performance solid-state flexible supercapacitor based on reduced graphene oxide/hierarchical core-shell Ag nanowire@ NiAl layered double hydroxide film electrode. Chem Eng J 348:338–349

    Article  CAS  Google Scholar 

  15. Zhao J, Li Y, Huang F, Zhang H, Gong J, Miao C, Zhu K, Cheng K, Ye K, Yan J et al (2018) High-performance asymmetric supercapacitor assembled with three-dimensional, coadjacent graphene-like carbon nanosheets and its composite. J Electroanal Chem 823:474–481

    Article  CAS  Google Scholar 

  16. Tian W, Gao Q, Zhang L, Yang C, Li Z, Tan Y, Qian W, Zhang H (2016) Renewable graphene-like nitrogen-doped carbon nanosheets as supercapacitor electrodes with integrated high energy–power properties. J Mater Chem A 4(22):8690–8699

    Article  CAS  Google Scholar 

  17. Gopalakrishnan A, Badhulika S (2018) Ultrathin graphene-like 2D porous carbon nanosheets and its excellent capacitance retention for supercapacitor. J Ind Eng Chem 68:257–266

    Article  CAS  Google Scholar 

  18. Liu B, Liu Y, Chen H, Yang M, Li H (2019) \(\text{MnO}_{2}\) Nanostructures deposited on graphene-like porous carbon nanosheets for high-rate performance and high-energy density asymmetric supercapacitors. ACS Sustain Chem Eng 7(3):3101–3110

    Article  CAS  Google Scholar 

  19. Sun HJ, Liu B, Peng TJ, Zhao XL (2018) Nitrogen-doped porous 3D graphene with enhanced supercapacitor properties. J Mater Sci 53(18):13100–13110. https://doi.org/10.1007/s10853-018-2561-4

    Article  CAS  Google Scholar 

  20. Wang S, Hu J, Jiang L, Li X, Cao J, Wang Q, Wang A, Li X, Qu L, Lu Y (2019) High-performance 3D CuO/Cu flowers supercapacitor electrodes by femtosecond laser enhanced electrochemical anodization. Electrochim Acta 293:273–282

    Article  CAS  Google Scholar 

  21. Wang G, Hu X, Liu L, Yu Y, Lv H, Chen A (2018) Nitrogen-doping hierarchically porous carbon nanosheets for supercapacitor. J Mater Sci Mater Electron 29(7):5363–5372

    Article  CAS  Google Scholar 

  22. Eftekhari A (2018) On the mechanism of microporous carbon supercapacitors. Mater Today Chem 7:1–4

    Article  CAS  Google Scholar 

  23. Lv B, Zheng C, Xu L, Zhou X, Cao H, Liu Z (2015) Porous graphene-like materials prepared from hollow carbonaceous microspheres for supercapacitors. ChemNanoMat 1(6):422–429

    Article  CAS  Google Scholar 

  24. Zhang H, Zhang Z, Luo J, Qi X, Yu J, Cai J, Wei J, Yang Z (2019) A chemical blowing strategy to fabricate biomass-derived carbon-aerogels with graphene-like nanosheet structures for high-performance supercapacitors. ChemSusChem 12:2462–2470

    CAS  Google Scholar 

  25. Liu MJ, Wei F, Yang XM, Dong SA, Li YJ, He XJ (2018) Synthesis of porous graphene-like carbon materials for high-performance supercapacitors from petroleum pitch using nano-\(\text{CaCO}_{3}\) as a template. New Carbon Mater 33(4):316–323

    Article  Google Scholar 

  26. Gopalakrishnan A, Kong CY, Badhulika S (2019) Scalable, large-area synthesis of heteroatom-doped few-layer graphene-like microporous carbon nanosheets from biomass for high-capacitance supercapacitors. New J Chem 43(3):1186–1194

    Article  CAS  Google Scholar 

  27. Veeramani V, Sivakumar M, Chen SM, Madhu R, Alamri HR, Alothman ZA, Hossain MSA, Chen CK, Yamauchi Y, Miyamoto N et al (2017) Lignocellulosic biomass-derived, graphene sheet-like porous activated carbon for electrochemical supercapacitor and catechin sensing. RSC Adv 7(72):45668–45675

    Article  CAS  Google Scholar 

  28. Liu B, Yang M, Chen H, Liu Y, Yang D, Li H (2018) Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors. J Power Sources 397:1–10

    Article  CAS  Google Scholar 

  29. Wang M, Cheng S, Yao M, Zhu Y, Wu P, Luo H, Yang L, Tang L, Liu M (2018) Synthesis of biomass-derived 3D porous graphene-like via direct solid-state transformation and its potential utilization in lithium-ion battery. Ionics 24(7):1879–1886

    Article  CAS  Google Scholar 

  30. Yu P, Liang Y, Dong H, Hu H, Liu S, Peng L, Zheng M, Xiao Y, Liu Y (2018) Rational synthesis of highly porous carbon from waste bagasse for advanced supercapacitor application. ACS Sustain Chem Eng 6(11):15325–15332

    Article  CAS  Google Scholar 

  31. Zhang Q, Han K, Li S, Li M, Li J, Ren K (2018) Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale 10(5):2427–2437

    Article  CAS  Google Scholar 

  32. Niu Q, Gao K, Tang Q, Wang L, Han L, Fang H, Zhang Y, Wang S, Wang L (2017) Large-size graphene-like porous carbon nanosheets with controllable N-doped surface derived from sugarcane bagasse pith/chitosan for high performance supercapacitors. Carbon 123:290–298

    Article  CAS  Google Scholar 

  33. Hou J, Cao C, Idrees F, Ma X (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9(3):2556–2564

    Article  CAS  Google Scholar 

  34. Lei H, Yan T, Wang H, Shi L, Zhang J, Zhang D (2015) Graphene-like carbon nanosheets prepared by a Fe-catalyzed glucose-blowing method for capacitive deionization. J Mater Chem A 3(11):5934–5941

    Article  CAS  Google Scholar 

  35. Danish M, Ahmad T (2018) A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew Sustain Energy Rev 87:1–21

    Article  CAS  Google Scholar 

  36. Gao K, Niu Q, Tang Q, Guo Y, Wang L (2018) Graphene-like 2D porous carbon nanosheets derived from cornstalk pith for energy storage materials. J Electron Mater 47(1):337–346

    Article  CAS  Google Scholar 

  37. Baccile N, Falco C, Titirici MM (2014) Characterization of biomass and its derived char using 13 C-solid state nuclear magnetic resonance. Green Chem 16(12):4839–4869

    Article  CAS  Google Scholar 

  38. Deng J, Xiong T, Wang H, Zheng A, Wang Y (2016) Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons. ACS Sustain Chem Eng 4(7):3750–3756

    Article  CAS  Google Scholar 

  39. Shu Y, Zhang F, Wang F, Wang H (2018) Catalytic reduction of NOx by biomass-derived activated carbon supported metals. Chin J Chem Eng 26(10):2077–2083

    Article  CAS  Google Scholar 

  40. Pan J, Cheng X, Yan X, Zhang C (2013) Preparation and hierarchical porous structure of biomorphic woodceramics from sugarcane bagasse. J Eur Ceram Soc 33(3):575–581

    Article  CAS  Google Scholar 

  41. Driemeier C, Santos WD, Buckeridge MS (2012) Cellulose crystals in fibrovascular bundles of sugarcane culms: orientation, size, distortion, and variability. Cellulose 19(5):1507–1515

    Article  CAS  Google Scholar 

  42. Guardia L, Suárez L, Querejeta N, Vretenár V, Kotrusz P, Skákalová V, Centeno TA (2019) Biomass waste-carbon/reduced graphene oxide composite electrodes for enhanced supercapacitors. Electrochim Acta 298:910–917

    Article  CAS  Google Scholar 

  43. Saranya P, Selladurai S (2018) Facile synthesis of \(\text{NiSnO}_{3}\)/graphene nanocomposite for high-performance electrode towards asymmetric supercapacitor device. J Mater Sci 53(23):16022–16046. https://doi.org/10.1007/s10853-018-2742-1

    Article  CAS  Google Scholar 

  44. Zhang L, Wang W, Cheng J, Shi Y, Zhang Q, Dou P, Xu X (2018) Skeleton networks of graphene wrapped double-layered polypyrrole/polyaniline nanotubes for supercapacitor applications. J Mater Sci 53(1):787–798. https://doi.org/10.1007/s10853-017-1543-2

    Article  CAS  Google Scholar 

  45. Luo H, Xiong P, Xie J, Yang Z, Huang Y, Hu J, Wan Y, Xu Y (2018) Uniformly dispersed freestanding carbon nanofiber/graphene electrodes made by a scalable biological method for high-performance flexible supercapacitors. Adv Funct Mater 28(48):1803075

    Article  CAS  Google Scholar 

  46. Zhang H, Li A, Wang J, Zhang Y, Zhao Z, Zhao H, Cheng M, Wang C, Wang J, Zhang S et al (2018) Graphene integrating carbon fiber and hierarchical porous carbon formed robust flexible “carbon-concrete” supercapacitor film. Carbon 126:500–506

    Article  CAS  Google Scholar 

  47. Qiu X, Xiao Z, Wang L, Fan LZ (2018) High rate integrated quasi-solid state supercapacitors based on nitrogen-enriched active carbon fiber/reduced graphene oxide nanocomposite. Carbon 130:196–205

    Article  CAS  Google Scholar 

  48. Wang Y, Zhang Y, Zhong W, Qing X, Zhou Q, Liu Q, Wang W, Liu X, Li M, Wang D (2018) Flexible supercapacitor with high energy density prepared by GO-induced porous coral-like polypyrrole (PPy)/PET non-woven fabrics. J Mater Sci 53(11):8409–8419. https://doi.org/10.1007/s10853-018-2131-9

    Article  CAS  Google Scholar 

  49. Gomes VG et al (2019) High performance hybrid supercapacitor based on doped zucchini-derived carbon dots and graphene. Mater Today Energy 12:198–207

    Article  Google Scholar 

  50. Du H, Wang C, Lv J (2018) Controllable morphologies of \(\text{Co}_{3}\text{O}_{4}\)@ \(\text{MnO}_{2}\) core-shell structure grown on nickel foam and their supercapacitor behavior. Solid State Commun 277:19–24

    Article  CAS  Google Scholar 

  51. Xia C, Leng M, Tao W, Wang Q, Gao Y, Zhang Q (2019) Polyaniline/carbon nanotube core–shell hybrid and redox active electrolyte for high-performance flexible supercapacitor. J Mater Sci Mater Electron 30(5):4427–4436

    Article  CAS  Google Scholar 

  52. Fu Y, Zhang N, Shen Y, Ge X, Chen M (2018) Micro-mesoporous carbons from original and pelletized rice husk via one-step catalytic pyrolysis. Bioresour Technol 269:67–73

    Article  CAS  Google Scholar 

  53. Loy ACM, Gan DKW, Yusup S, Chin BLF, Lam MK, Shahbaz M, Unrean P, Acda MN, Rianawati E (2018) Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst. Bioresour Technol 261:213–222

    Article  CAS  Google Scholar 

  54. Liu F, Wang Z, Zhang H, Jin L, Chu X, Gu B, Huang H, Yang W (2019) Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin. Carbon 149:105–116

    Article  CAS  Google Scholar 

  55. Chen H, Chen J, Chen D, Wei H, Liu P, Wei W, Lin H, Han S (2019) Nitrogen-and oxygen-rich dual-decorated carbon materials with porosity for high-performance supercapacitors. J Mater Sci 54(7):5625–5640. https://doi.org/10.1007/s10853-018-2993-x

    Article  CAS  Google Scholar 

  56. Li C, Li J, Zhang Y, Cui X, Lei H, Li G (2019) Heteroatom-doped hierarchically porous carbons derived from cucumber stem as high-performance anodes for sodium-ion batteries. J Mater Sci 54(7):5641–5657. https://doi.org/10.1007/s10853-018-03229-2

    Article  CAS  Google Scholar 

  57. Zeng D, Dou Y, Li M, Zhou M, Li H, Jiang K, Yang F, Peng J (2018) Wool fiber-derived nitrogen-doped porous carbon prepared from molten salt carbonization method for supercapacitor application. J Mater Sci 53(11):8372–8384. https://doi.org/10.1007/s10853-018-2035-8

    Article  CAS  Google Scholar 

  58. Liu X, Wang H, Cui Y, Xu X, Zhang H, Lu G, Shi J, Liu W, Chen S, Wang X (2018) High-energy sodium-ion capacitor assembled by hierarchical porous carbon electrodes derived from Enteromorpha. J Mater Sci 53(9):6763–6773. https://doi.org/10.1007/s10853-017-1982-9

    Article  CAS  Google Scholar 

  59. Yu W, Wang H, Liu S, Mao N, Liu X, Shi J, Liu W, Chen S, Wang X (2016) N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J Mater Chem A 4(16):5973–5983

    Article  CAS  Google Scholar 

  60. Tan H, Wang X, Jia D, Hao P, Sang Y, Liu H (2017) Structure-dependent electrode properties of hollow carbon micro-fibers derived from Platanus fruit and willow catkins for high-performance supercapacitors. J Mater Chem A 5(6):2580–2591

    Article  CAS  Google Scholar 

  61. Li J, Han K, Li S (2018) Porous carbons from Sargassum muticum prepared by \(\text{H}_{3}\text{PO}_{4}\) and KOH activation for supercapacitors. J Mater Sci Mater Electron 29(10):8480–8491

    Article  CAS  Google Scholar 

  62. Zhang F, Liu T, Li M, Yu M, Luo Y, Tong Y, Li Y (2017) Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett 17(5):3097–3104

    Article  CAS  Google Scholar 

  63. Lu SY, Jin M, Zhang Y, Niu YB, Gao JC, Li CM (2018) Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv Energy Mater 8(11):1702545

    Article  CAS  Google Scholar 

  64. Ojha K, Kumar B, Ganguli AK (2017) Biomass derived graphene-like activated and non-activated porous carbon for advanced supercapacitors. J Chem Sci 129(3):397–404

    Article  CAS  Google Scholar 

  65. Mo RJ, Zhao Y, Zhao MM, Wu M, Wang C, Li JP, Kuga S, Huang Y (2018) Graphene-like porous carbon from sheet cellulose as electrodes for supercapacitors. Chem Eng J 346:104–112

    Article  CAS  Google Scholar 

  66. Zhao J, Jiang Y, Fan H, Liu M, Zhuo O, Wang X, Wu Q, Yang L, Ma Y, Hu Z (2017) Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure–performance relationship. Adv Mater 29(11):1604569

    Article  CAS  Google Scholar 

  67. Li Z, Zhang L, Chen X, Li B, Wang H, Li Q (2019) Three-dimensional graphene-like porous carbon nanosheets derived from molecular precursor for high-performance supercapacitor application. Electrochim Acta 296:8–17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of Shandong, China (ZR2017MEE010) and the Fundamental Research Funds of Shandong University (2016JC005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuihua Han.

Ethics declarations

Conflict of interest

All authors listed have declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 4407 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Han, K., Qi, J. et al. Nanoscale/microscale porous graphene-like sheets derived from different tissues and components of cane stalk for high-performance supercapacitors. J Mater Sci 54, 14085–14101 (2019). https://doi.org/10.1007/s10853-019-03910-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03910-0

Navigation