Skip to main content

Advertisement

Log in

Synthesis, structure and properties of Pd@MOF-808

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The core–shell structure and penetrated structure of Pd-modified metal organic frameworks MOF-808 series materials (named as Pd@MOF-808) are successfully synthesized using Zr(IV) as centron ion, trimesic acid as ligand and Pd as modifier by simple solution method. The structure control and properties of Pd@MOF-808 are characterized by XRD, FT-IR, TEM, XPS, UV–Vis, specific surface area measurement, thermogravimetric analysis, photocatalytic hydrogen production and hydrogen storage testing. The results show that the synthesized Pd nanoparticles have been successfully introduced into the cavity and channel of MOF-808, and the structure of Pd@MOF-808 series materials could remain stable at 350 °C. Photocatalytic hydrogen production experiments exhibit the highest hydrogen production of Pd@MOF-808-b (236 μmol g−1 h−1). More importantly, the results of the adsorption experiment show that the hydrogen storage capacities of the as-prepared 10 wt% Pd@MOF-808-b could reach 2.61 wt%, 5.04 wt% and 8.20 wt% under 4 MPa at 300 K, 195 K and 77 K, respectively. Furthermore, thermodynamic analysis shows that the maximum hydrogen adsorption enthalpy of Pd@MOF-808-b up to  1.378 kJ mol−1 indicates excellent potential for hydrogen storage and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Le Duigou A, Quéméré MM, Marion P, Menanteau P, Decarre S, Sinegre L, Nadau L, Rastetter A, Cuni A, Mulard P, Antoine L, Alleau T (2013) Hydrogen pathways in France: results of the HyFrance3 Project. Energy Policy 62:1562–1569

    Article  Google Scholar 

  2. https://energy.gov/eere/fuelcells/hydrogen-storage

  3. Chen SS, Liu J, Li Z, Wang HT, Wang XB, Xu YF (2017) Hydrogen storage properties of highly cross-linked polymers derived from chlorinated polypropylene and polyethylenimine. Int J Hydrog Energy 42:23028–23034

    Article  CAS  Google Scholar 

  4. Wang YQ, Lu SX, Zhou ZY, Zhou WZ, Guo J, Lan ZQ (2017) Effect of transition metal on the hydrogen storage properties of Mg–Al alloy. J Mater Sci 52:2392–2399. https://doi.org/10.1021/jp402770p

    Article  CAS  Google Scholar 

  5. Panwar K, Srivastava S (2018) Investigations on calculation of heat of formation for multi-element AB 5-type hydrogen storage alloy. Int J Hydrog Energy 43:11079–11084

    Article  CAS  Google Scholar 

  6. Hassan NHA, Mohamed AR, Zein SHS (2007) Study of hydrogen storage by carbonaceous material at room temperature. Diam Relat Mater 16:1517–1523

    Article  CAS  Google Scholar 

  7. Alhumaidan F, Cresswell D, Garforth A (2011) Hydrogen storage in liquid organic hydride: producing hydrogen catalytically from methylcyclohexane. Energy Fuel 25:4217–4234

    Article  CAS  Google Scholar 

  8. Mustafa NS, Ismail M (2014) Enhanced hydrogen storage properties of 4MgH2 + LiAlH4 composite system by doping with Fe2O3 nanopowder. Int J Hydrog Energy 39:7834–7841

    Article  CAS  Google Scholar 

  9. Li C, Li JB, Wu FM, Li SS, Xia JB, Wang LW (2011) High capacity hydrogen storage in Ca decorated graphyne: a first-principles study. J Phys Chem C 115:23221–23225

    Article  CAS  Google Scholar 

  10. Huynh NTX, Chihaia V, Son DN (2019) Hydrogen storage in MIL-88 series. J Mater Sci 54:3994–4010. https://doi.org/10.1021/acs.chemmater.5b04538

    Article  CAS  Google Scholar 

  11. Gómez-Gualdrón DA, Wang TC, García-Holley P, Sawelewa RM, Argueta E, Snurr RQ, Hupp JT, Yildirim T, Farha OK (2017) Understanding volumetric and gravimetric hydrogen adsorption trade-off in metal–organic frameworks. ACS Appl Mater Interfaces 9:33419–33428

    Article  Google Scholar 

  12. Zhao XR, Yin FX, Liu N, Li GR, Fan TX, Chen BH (2017) Highly efficient metal–organic-framework catalysts for electrochemical synthesis of ammonia from N-2 (air) and water at low temperature and ambient pressure. J Mater Sci 52:10175–10185. https://doi.org/10.1007/s12274-018-1987-y

    Article  CAS  Google Scholar 

  13. Tian P, He X, Li WX, Zhao L, Fang W, Chen H, Zhang FQ, Zhang WQ, Wang W (2018) Zr-MOFs based on Keggin-type polyoxometalates for photocatalytic hydrogen production. J Mater Sci 53:12016–12029. https://doi.org/10.1007/s10853-018-2476-0

    Article  CAS  Google Scholar 

  14. Wang XB, Liu J, Leong S, Lin XC, Wei J, Kong B, Xu YF, Low ZX, Yao JF, Wang HT (2016) Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties. ACS Appl Mater Interfaces 8:9080–9087

    Article  CAS  Google Scholar 

  15. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112:673–674

    Article  CAS  Google Scholar 

  16. Horiuchi Y, Toyao T, Saito M, Mochizuki K, Iwata M, Higashimura H, Anpo M, Matsuoka M (2012) Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal–organic framework. J Phys Chem C 116:20848–20853

    Article  CAS  Google Scholar 

  17. Yuan YP, Yin LS, Cao SW, Xu GS, Li CH, Xue C (2015) Improving photocatalytic hydrogen production of metal–organic framework UiO-66 octahedrons by dye-sensitization. Appl Catal B Environ 168:572–576

    Article  Google Scholar 

  18. Xia LZ, Wang FL (2016) Prediction of hydrogen storage properties of Zr-based MOFs. Inorg Chim Acta 444:186–192

    Article  CAS  Google Scholar 

  19. Collins DJ, Zhou HC (2007) Hydrogen storage in metal–organic frameworks. J Mater Chem 17:3154–3160

    Article  CAS  Google Scholar 

  20. Xu J, Liu J, Li Z, Wang XB, Xu YF, Chen SS, Wang Z (2019) Optimized synthesis of Zr(IV) metal organic frameworks(MOFs-808) for efficient hydrogen storage. New J Chem 43:4092–4099

    Article  CAS  Google Scholar 

  21. Prabhakaran PK, Catoire L, Deschamps J (2017) Aluminium doping composite metal–organic framework by alane nanoconfinement: impact on the room temperature hydrogen uptake. Microporous Mesoporous Mater 243:214–220

    Article  CAS  Google Scholar 

  22. Yamauchi M, Ikeda R, Kitagawa H, Takata M (2016) Nanosize effects on hydrogen storage in palladium. J Phys Chem C 112:3294–3299

    Article  Google Scholar 

  23. Horinouchi S, Yamanoi Y, Yonezawa T, Mouri T, Nishihara H (2006) Hydrogen storage properties of isocyanide-stabilized palladium nanoparticles. Langmuir 22:1880–1884

    Article  CAS  Google Scholar 

  24. Shiraz HG, Shiraz MG (2017) Palladium nanoparticle and decorated carbon nanotube for electrochemical hydrogen storage. Int J Hydrog Energy 42:11528–11533

    Article  CAS  Google Scholar 

  25. Jin J, Ouyang J, Yang HM (2017) Pd nanoparticles and MOFs synergistically hybridized halloysite nanotubes for hydrogen storage. Nanoscale Res Lett 12:240

    Article  Google Scholar 

  26. Nasalevich MA, Becker R, Ramos-Fernandez EV, Castellanos S, Veber SL, Fedin MV, Kapteijn F, Reek JNH, van der Vlugt JI, Gascon J (2015) Co@NH2-MIL-125(Ti): cobaloxime-derived metal–organic framework-based composite for light-driven H2 production. Energy Environ Sci 8:364–375

    Article  CAS  Google Scholar 

  27. Wen MC, Mori K, Kamegawa T, Yamashita H (2014) Amine-functionalized MIL-101(Cr) with imbedded platinum nanoparticles as a durable photocatalyst for hydrogen production from water. Chem Commun 50:11645–11648

    Article  CAS  Google Scholar 

  28. Zlotea C, Campesi R, Cuevas F, Leroy E, Dibandjo P, VolkringerC LT, Ferey G, Latroche M (2010) Pd nanoparticles embedded into a metal–organic framework: synthesis, structural characteristics, and hydrogen sorption properties. J Am Chem Soc 132:2991–2997

    Article  CAS  Google Scholar 

  29. Abid HR, Tian H, Ang HM, Tade MO, Buckley CE, Wang SB (2012) Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage. Chem Eng J 187:415–420

    Article  CAS  Google Scholar 

  30. Zhang MM, Guan JC, Zhang BS, Su DS, Williams CT, Liang CH (2012) Chemical vapor deposition of Pd(CH)(CH) to synthesize Pd@MOF-5 catalysts for suzuki coupling reaction. Catal Lett 142:313–318

    Article  CAS  Google Scholar 

  31. Liang HY, Raitano JM, He GH, Akey AJ, Herman IP, Zhang LH, Chan SW (2012) Aqueous co-precipitation of Pd-doped cerium oxide nanoparticles: chemistry, structure, and particle growth. J Mater Sci 47:299–307. https://doi.org/10.1007/s10853-011-5798-8

    Article  CAS  Google Scholar 

  32. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  33. Chen SS, Xiao SB, Liu J, Li Z (2018) Synthesis and hydrogen storage properties of zirconium metal–organic frameworks UIO-66(H2ADC) with 9,10-anthracenedicarboxylic acid as ligand. J Porous Mater 25:1783–1788

    Article  CAS  Google Scholar 

  34. Zhou WP, Lewera A, Larsen R, Masel R, Bagus PS, Wieckowski A (2006) A size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J Phys Chem B 110:13393–13398

    Article  CAS  Google Scholar 

  35. Tang X, Zhao JH, Li YH, Zhou ZJ, Li K, Liu FT, Lan YQ (2017) Co-Doped Zn1−xCdxS nanocrystals from metal–organic framework precursors: porous microstructure and efficient photocatalytic hydrogen evolution. Dalton Trans 46:10553–10557

    Article  CAS  Google Scholar 

  36. Zhen WL, Ma JT, Lu GX (2016) Small-sized Ni (111) particles in metal–organic frameworks with low over-potential for visible photocatalytic hydrogen. Appl Catal B Environ 190:12–25

    Article  CAS  Google Scholar 

  37. Kampouri S, Nguyen TN, Spodaryk M, Palgrave RG, Züttel A, Smit B, Stylianou KC (2018) Concurrent photocatalytic hydrogen generation and dye degradation using MIL-125-NH2 under visible light irradiation. Adv Funct Mater 28:1–9

    Google Scholar 

  38. Sarina S, Zhu HY, Xiao Q, Jaatinen E, Jia JF, Huang YM, Zheng ZF, Wu HS (2014) Viable photocatalysts under solar-spectrum irradiation: nonplasmonic metal nanoparticles. Angew Chem Int Edit 53:2935–2940

    Article  CAS  Google Scholar 

  39. Sun DR, Liu WJ, Fu YH, Fang ZX, Sun FX, Fu XZ, Zhang YF, Li ZH (2014) Noble metals can have different effects on photocatalysis over metal–organic frameworks (MOFs): a case study on M/NH\r, 2\r, -MIL-125(Ti) (M = Pt and Au). Chem Eur J 20:4780–4788

    Article  CAS  Google Scholar 

  40. Li Z, Xiao JD, Jiang HL (2016) Encapsulating A Co(II) molecular photocatalyst in metal–organic framework for visible-light driven H2 production: boosting catalytic efficiency via spatial charge separation. ACS Catal 6:5359–5365

    Article  CAS  Google Scholar 

  41. He J, Wang JQ, Chen YJ, Zhang JP, Duan DL, Wang Y, Yan ZY (2014) A dye-sensitized Pt@UiO-66(Zr) metal–organic framework for visible-light photocatalytic hydrogen production. Chem Commun 50:7063–7066

    Article  CAS  Google Scholar 

  42. Wang DK, Song YJ, Cai JY, Wu L, Li ZH (2016) Effective photo-reduction to deposit Pt nanoparticles on MIL-100(Fe) for visible-light-induced hydrogen evolution. New J Chem 40:9170–9175

    Article  CAS  Google Scholar 

  43. Xiao JD, Shang QC, Xiong YJ, Zhang Q, Luo Y, Yu SH, Jiang HL (2016) Boosting photocatalytic hydrogen production of a metal–organic framework decorated with platinum nanoparticles: the platinum location matters. Angew Chem Int Edit 55:1–6

    Article  Google Scholar 

  44. Li GO, Kobayashi H, Taylor JM, Ikeda R, Kubota Y, Kato K, Takata M, Yamamoto T, Toh S, Matsumura S, Kitagawa H (2014) Hydrogen storage in Pd nanocrystals covered with a metal–organic framework. Nat Mater 13:802–806

    Article  CAS  Google Scholar 

  45. Zhao Q, Yuan W, Liang JM, Li JP (2013) Synthesis and hydrogen storage studies of metal–organic framework UiO-66. Int J Hydrog Energy 38:13104–13109

    Article  CAS  Google Scholar 

  46. Furukawa H, Miller MA, Yaghi OM (2007) Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks. J Mater Chem 17:3197–3204

    Article  CAS  Google Scholar 

  47. Wong-Foy AG, Matzger AJ, Yaghi OM (2006) Exceptional H2 saturation uptake in microporous metal–organic frameworks. J Am Chem Soc 128:3494–3495

    Article  CAS  Google Scholar 

  48. Farha OK, Yazaydın AO, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG, Nguyen ST, Snurr RQ, Hupp JT (2010) De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2:944–948

    Article  CAS  Google Scholar 

  49. Rao DW, Lu RF, Xiao CY, Kan EJ, Deng KM (2011) Lithium-doped MOF impregnated with lithium-coated fullerenes: a hydrogen storage route for high gravimetric and volumetric uptakes at ambient temperatures. Chem Commun 47:7698–7700

    Article  CAS  Google Scholar 

  50. Stergiannakos T, Tylianakis E, Klontzas E, Trikalitis PN, Froudakis GE (2012) Hydrogen storage in novel Li-doped corrole metal–organic frameworks. J Phys Chem C 116:8359–8363

    Article  CAS  Google Scholar 

  51. Zlotea C, Campesi R, Cuevas F, Leroy E, Dibandjo P, Volkringer C, Loiseau T, Férey G, Latroche M (2010) Pd nanoparticles embedded into a metal–organic framework: synthesis, structural characteristics, and hydrogen sorption properties. J Am Chem Soc 132:2991–2997

    Article  CAS  Google Scholar 

  52. Chen SS, Liu J, Xu Y, Li Z, Wang T, Xu J, Wang Z (2018) Hydrogen storage properties of the novel crosslinked UiO-66-(OH)2. Int J Hydrog Energy 43:15370–15377

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (No. 21171004), Anhui Province Academic Technology Leader Training Funded Projects, the Key Technologies Research and Development Program of Anhui Province (Nos. 1704a0802134, 1604a0802113), Natural Science Foundation of Anhui (No. 1708085QE120) and Major Projects of Natural Science Research in Colleges and Universities of Anhui (No. KJ20171495).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Liu, J., Li, Z. et al. Synthesis, structure and properties of Pd@MOF-808. J Mater Sci 54, 12911–12924 (2019). https://doi.org/10.1007/s10853-019-03786-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03786-0

Navigation