Skip to main content

Advertisement

Log in

Zr-MOFs based on Keggin-type polyoxometalates for photocatalytic hydrogen production

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The porous and water-stable polyoxometalates-based Zr-MOFs PW12@UiO-NH2 was proposed for photocatalytic H2 evolution and degradation pollutants via adopting Keggin-type polyoxometalates (POMs) into UiO-66-NH2 through a facile one-step solvothermal method. Systematically characterizations were carried out to confirm the encapsulation of Keggin-type PW12 within the cavities of porous UiO-66-NH2 without modifying its fundamental framework. Benifiting from the integration of Keggin-type PW12 units with redox activity and porous UiO-66-NH2, the results showed that enhanced photocatalytic H2 evolution performance and RhB degradation activity for PW12@UiO-NH2 were realized compared with pristine UiO-66-NH2 under visible-light irradiation. The significant improvement of photocurrent density under a monochromatic light irradiation implied the faciliated separation procedure of photo-generated charge carriers with the incorporation of Keggin-type PW12 units. Hence, our findings reveal a novel topology POM-based MOFs which paves a way for environmental and energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Scheme 1
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photocatalysis of water at semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  2. Li Y, Hou Y, Fu Q, Peng S, Hu YH (2017) Oriented growth of ZnIn2S4/In(OH)3 heterojunction by a facile hydrothermal transformation for efficient photocatalytic H2 production. Appl Catal B 206:726–733. https://doi.org/10.1016/j.apcatb.2017.01.062

    Article  Google Scholar 

  3. Xu C-Q, Xiao Y-H, Yu Y-X, Zhang W-D (2018) The role of hydrogen bonding on enhancement of photocatalytic activity of the acidified graphitic carbon nitride for hydrogen evolution. J Mater Sci 53(1):409–422. https://doi.org/10.1007/s10853-017-1507-6

    Article  Google Scholar 

  4. Mohaghegh N, Kamrani S, Tasviri M, Elahifard M, Gholami M (2015) Nanoporous Ag2O photocatalysts based on copper terephthalate metal–organic frameworks. J Mater Sci 50(13):4536–4546. https://doi.org/10.1002/ange.201800269

    Article  Google Scholar 

  5. Liang Z, Qu C, Xia D, Zou R, Xu Q (2018) Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.201800269

    Google Scholar 

  6. Dolgopolova EA, Rice AM, Martin CR, Shustova NB (2018) Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chem Soc Rev. https://doi.org/10.1039/C7CS00861A

    Google Scholar 

  7. Usman M, Mendiratta S, Lu K-L (2017) Semiconductor metal–organic frameworks: future low-bandgap materials. Adv Mater 29(6):1605071. https://doi.org/10.1002/adma.201605071

    Article  Google Scholar 

  8. Li S, Sun S, Wu H, Wei C, Hu Y (2018) Effects of electron-donating groups on the photocatalytic reaction of MOFs. Catal Sci Technol 8(6):1696–1703. https://doi.org/10.1039/C7CY02622F

    Article  Google Scholar 

  9. Lan G, Zhu Y-Y, Veroneau SS, Xu Z, Micheroni D, Lin W (2018) Electron injection from photoexcited metal-organic framework ligands to Ru2 secondary building units for visible-light-driven hydrogen evolution. J Am Chem Soc 140(16):5326–5329. https://doi.org/10.1021/jacs.8b01601

    Article  Google Scholar 

  10. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130(42):13850–13851

    Article  Google Scholar 

  11. Gomes Silva C, Luz I, Llabres i Xamena FX, Corma A, Garcia H (2010) Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. Chemistry 16(36):11133–11138. https://doi.org/10.1002/chem.200903526

    Article  Google Scholar 

  12. Lin R, Shen L, Ren Z, Wu W, Tan Y, Fu H, Zhang J, Wu L (2014) Enhanced photocatalytic hydrogen production activity via dual modification of MOF and reduced graphene oxide on CdS. Chem Commun 50(62):8533–8535. https://doi.org/10.1039/c4cc01776e

    Article  Google Scholar 

  13. Zhou J-J, Wang R, Liu X-L, Peng F-M, Li C-H, Teng F, Yuan Y-P (2015) In situ growth of CdS nanoparticles on UiO-66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation. Appl Surf Sci 346:278–283. https://doi.org/10.1016/j.apsusc.2015.03.210

    Article  Google Scholar 

  14. Wang R, Gu L, Zhou J, Liu X, Teng F, Li C, Shen Y, Yuan Y (2015) Quasi-polymeric metal-organic framework UiO-66/g-C3N4 heterojunctions for enhanced photocatalytic hydrogen evolution under visible light irradiation. Adv Mater Interfaces 2(10):1500037. https://doi.org/10.1002/admi.201500037

    Article  Google Scholar 

  15. Yang J, Dai Y, Zhu X, Wang Z, Li Y, Zhuang Q, Shi J, Gu J (2015) Metal–organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. J Mater Chem A 3(14):7445–7452. https://doi.org/10.1039/c5ta00077g

    Article  Google Scholar 

  16. Su Y, Zhang Z, Liu H, Wang Y (2017) Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Appl Catal B 200:448–457. https://doi.org/10.1016/j.apcatb.2016.07.032

    Article  Google Scholar 

  17. Wang SS, Yang GY (2015) Recent advances in polyoxometalate-catalyzed reactions. Chem Rev 115(11):4893–4962. https://doi.org/10.1021/cr500390v

    Article  Google Scholar 

  18. Zhao X, Zhang S, Yan J, Li L, Wu G, Shi W, Yang G, Guan N, Cheng P (2018) Polyoxometalate-based metal-organic frameworks as visible-light-induced photocatalysts. Inorg Chem. https://doi.org/10.1021/acs.inorgchem.8b00098

    Google Scholar 

  19. Ye JJ, Wu CD (2016) Immobilization of polyoxometalates in crystalline solids for highly efficient heterogeneous catalysis. Dalton Trans 45(25):10101–10112. https://doi.org/10.1039/c6dt01378c

    Article  Google Scholar 

  20. Bigi F, Corradini A, Quarantelli C, Sartori G (2007) Silica-bound decatungstates as heterogeneous catalysts for H2O2 activation in selective sulfide oxidation. J Catal 250(2):222–230. https://doi.org/10.1016/j.jcat.2007.06.019

    Article  Google Scholar 

  21. Ruiz V, Suárez-Guevara J, Gomez-Romero P (2012) Hybrid electrodes based on polyoxometalate–carbon materials for electrochemical supercapacitors. Electrochem Commun 24:35–38. https://doi.org/10.1016/j.elecom.2012.08.003

    Article  Google Scholar 

  22. Vilà-Nadal L, Cronin L (2017) Design and synthesis of polyoxometalate-framework materials from cluster precursors. Nat Rev Mater 2:17054. https://doi.org/10.1038/natrevmats.2017.54

    Article  Google Scholar 

  23. Zhang Y, Lin B, Sun Y, Han P, Wang J, Ding X, Zhang X, Yang H (2016) MoO2 @Cu@C composites prepared by using polyoxometalates@metal-organic frameworks as template for all-solid-state flexible supercapacitor. Electrochim Acta 188:490–498. https://doi.org/10.1016/j.electacta.2015.12.037

    Article  Google Scholar 

  24. Zhang Z-M, Zhang T, Wang C, Lin Z, Long L-S, Lin W (2015) Photosensitizing metal–organic framework enabling visible-light-driven proton reduction by a Wells–Dawson-type polyoxometalate. J Am Chem Soc 137(9):3197–3200

    Article  Google Scholar 

  25. Kong XJ, Lin Z, Zhang ZM, Zhang T, Lin W (2016) Hierarchical integration of photosensitizing metal-organic frameworks and nickel-containing polyoxometalates for efficient visible-light-driven hydrogen evolution. Angew Chem Int Ed 55(22):6411–6416

    Article  Google Scholar 

  26. Katz MJ, Brown ZJ, Colon YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK (2013) A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem Commun 49(82):9449–9451. https://doi.org/10.1039/c3cc46105j

    Article  Google Scholar 

  27. Liu X, Li Y, Peng S, Lu G, Li S (2013) Photosensitization of SiW11O8-39-modified TiO2 by Eosin Y for stable visible-light H2 generation. Int J Hydrog Energy 38(27):11709–11719. https://doi.org/10.1016/j.ijhydene.2013.06.095

    Article  Google Scholar 

  28. Damyanova S, Dimitrov L, Mariscal R, Fierro J, Petrov L, Sobrados I (2003) Immobilization of 12-molybdophosphoric and 12-tungstophosphoric acids on metal-substituted hexagonal mesoporous silica. Appl Catal A 256(1):183–197

    Article  Google Scholar 

  29. Shen L, Liang S, Wu W, Liang R, Wu L (2013) Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI). Dalton Trans 42(37):13649–13657. https://doi.org/10.1039/c3dt51479j

    Article  Google Scholar 

  30. Piscopo CG, Polyzoidis A, Schwarzer M, Loebbecke S (2015) Stability of UiO-66 under acidic treatment: opportunities and limitations for post-synthetic modifications. Microporous Mesoporous Mater 208:30–35

    Article  Google Scholar 

  31. Feng W, Ding Y, Liu Y, Lu R (2006) The photochromic process of polyoxometalate-based nanocomposite thin film by in situ AFM and spectroscopy. Mater Chem Phys 98(2–3):347–352. https://doi.org/10.1016/j.matchemphys.2005.09.037

    Article  Google Scholar 

  32. Jiang P-C, Chen JS, Lin YK (2003) Structural and electrical characteristics of W-N thin films prepared by reactive rf sputtering. J Vac Sci Technol A Vac Surf Films 21(3):616–622. https://doi.org/10.1116/1.1564029

    Article  Google Scholar 

  33. Brisdon B, Griffin G, Pierce J, Walton R (1981) X-ray photoelectron spectra of inorganic molecules: XXX11 For part XXIX see ref. 31. Organometallic derivatives of tungsten (O) and tungsten (II). J Organomet Chem 219(1):53–59

    Article  Google Scholar 

  34. Jalil PA, Faiz M, Tabet N, Hamdan NM, Hussain Z (2003) A study of the stability of tungstophosphoric acid, H3PW12O40, using synchrotron XPS, XANES, hexane cracking, XRD, and IR spectroscopy. J Catal 217(2):292–297. https://doi.org/10.1016/s0021-9517(03)00066-6

    Article  Google Scholar 

  35. Lin YS, Tsai TH, Lu WH, Shie BS (2014) Lithium electrochromic properties of atmospheric pressure plasma jet-synthesized tungsten/molybdenum-mixed oxide films for flexible electrochromic device. Ionics 20(8):1163–1174. https://doi.org/10.1007/s11581-014-1072-9

    Article  Google Scholar 

  36. Yang H, Li J, Zhang H, Lv Y, Gao S (2014) Facile synthesis of POM@MOF embedded in SBA-15 as a steady catalyst for the hydroxylation of benzene. Microporous Mesoporous Mater 195(9):87–91

    Article  Google Scholar 

  37. Tripathi B, Bhatt P, Kanth PC, Yadav P, Desai B, Pandey MK, Kumar M (2015) Temperature induced structural, electrical and optical changes in solution processed perovskite material: application in photovoltaics. Sol Energy Mater Sol Cells 132:615–622

    Article  Google Scholar 

  38. Zhang J, Chen X, Takanabe K, Maeda K, Domen K, Epping JD, Fu X, Antonietti M, Wang X (2010) Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew Chem Int Ed 49(2):441–444

    Article  Google Scholar 

  39. Gelderman K, Lee L, Donne S (2007) Flat-band potential of a semiconductor: using the Mott–Schottky equation. J Chem Educ 84(4):685–688

    Article  Google Scholar 

  40. Bak T, Nowotny J, Rekas M, Sorrell C (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrog Energy 27(10):991–1022

    Article  Google Scholar 

  41. Radecka M, Rekas M, Trenczek-Zajac A, Zakrzewska K (2008) Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J Power Sources 181(1):46–55. https://doi.org/10.1016/j.jpowsour.2007.10.082

    Article  Google Scholar 

  42. Liu X, Li Y, Peng S, Lu G, Li S (2012) Photocatalytic hydrogen evolution under visible light irradiation by the polyoxometalate α-[AlSiW11(H2O)O39]5−-Eosin Y system. Int J Hydrog Energy 37(17):12150–12157. https://doi.org/10.1016/j.ijhydene.2012.06.028

    Article  Google Scholar 

  43. Han C, Wang Y, Lei Y, Wang B, Wu N, Shi Q, Li Q (2015) In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res 8(4):1199–1209. https://doi.org/10.1007/s12274-014-0600-2

    Article  Google Scholar 

  44. Yan G, Shi H, Tan H, Zhu W, Wang Y, Zang H, Li Y (2016) Coupling with a narrow-band-gap semiconductor for the enhancement of visible-light photocatalytic activity: preparation of Bi2O x S3-x/Nb6O17 and application to the degradation of methyl orange. Dalton Trans 45(35):13944–13950. https://doi.org/10.1039/C6DT02338J

    Article  Google Scholar 

  45. Zhang N, Zhang Y, Pan X, Fu X, Liu S, Xu Y-J (2011) Assembly of CdS nanoparticles on the two-dimensional graphene scaffold as visible-light-driven photocatalyst for selective organic transformation under ambient conditions. J Phys Chem C 115(47):23501–23511

    Article  Google Scholar 

  46. Wang S-S, Yang G-Y (2015) Recent advances in polyoxometalate-catalyzed reactions. Chem Rev 115(11):4893–4962

    Article  Google Scholar 

  47. Wang M, Sun L, Lin Z, Cai J, Xie K, Lin C (2013) p–n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy Environ Sci 6(4):1211–1220. https://doi.org/10.1039/c3ee24162a

    Article  Google Scholar 

  48. Vaddipalli SR, Sanivarapu SR, Vengatesan S, Lawrence JB, Eashwar M, Sreedhar G (2016) Heterostructured Au NPs/CdS/LaBTC MOFs photoanode for efficient photoelectrochemical water splitting: stability enhancement via CdSe QDs to 2D-CdS nanosheets transformation. ACS Appl Mater Interfaces 8(35):23049–23059

    Article  Google Scholar 

  49. Hendon CH, Tiana D, Fontecave M, Sanchez C, D’Arras L, Sassoye C, Rozes L, Mellot-Draznieks C, Walsh A (2013) Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. J Am Chem Soc 135(30):10942–10945. https://doi.org/10.1021/ja405350u

    Article  Google Scholar 

Download references

Acknowledgements

This work were financially supported by the National Natural Science Foundation of China (61604110), Key Technology R&D Program of Hubei Province (2015BCA253), China Postdoctoral Science Foundation (2015M572210, 2016M602376), Open Foundation of The State Key Laboratory of Refractories and Metallurgy (2014QN17), Natural Science Foundation of Hubei Provincial China (2017CFB291), Department of Education Science Research Program of Hubei Province (Q20161110), and Open Foundation of Key Laboratory of Green Chemical Process (Wuhan Institute of Technology), Ministry of Education (NRGCT201503), Training Programs of Innovation and Entrepreneurship for Undergraduates of Province (201510488022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, P., He, X., Li, W. et al. Zr-MOFs based on Keggin-type polyoxometalates for photocatalytic hydrogen production. J Mater Sci 53, 12016–12029 (2018). https://doi.org/10.1007/s10853-018-2476-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2476-0

Keywords

Navigation