Skip to main content
Log in

Structural characterization of antifungal CaZn2(OH)6·2H2O nanoparticles obtained via mechanochemical processing

  • Mechanochemical Synthesis
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The establishment of microorganisms and particularly fungi on rock surfaces, which is favored by humid tropical climates, may accelerate the degradation of historical monuments and buildings and thereby cause the irreversible loss of rich cultural heritage. Therefore, it is urgent to search for new ways to preserve such buildings. The in vitro antifungal activity of calcium zinc hydroxide dihydrate [CaZn2(OH)6·2H2O] (CZ) synthesized via the sol–gel method has been previously reported for limestone. The present study reports for the first time, the minimum fungicidal concentration (MFC) of CZ obtained via mechanochemical processing, against diverse fungi involved in biodeterioration processes of limestone and dolostone. We found that CZ nanoparticles had a fungicidal effect on all evaluated fungi, at concentrations of 156–1250 μg/mL. The MFC depends on the number of cells in conidia and the presence of melanin in cell walls. For these reasons, Pestalotiopsis maculans and Curvularia lunata, which had more than four cells and melanin pigmentation, both required a greater CZ concentration (1250 μg/mL) for inhibition, compared with species from the genera Penicillium oxalicum and Aspergillus niger, which had one cell and were strongly inhibited. Thus, CZ nanoparticles are promising candidates for application in treatments to restore the cultural heritage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Gadd GM, Bahri-Esfahani J, Li Q, Rhee YJ, Wei Z, Fomina M, Liang X (2014) Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 28:36–55

    Article  Google Scholar 

  2. Ortega-Morales BO, Narváez-Zapata J, Reyes-Estebanez M, Quintana P, De la Rosa-García SC, Bullen H, Gómez-Cornelio S, Chan-Bacab MJ (2016) Bioweathering potential of cultivable fungi associated with semi-arid surface microhabitats of Mayan buildings. Front Microbiol 7:201

    Article  Google Scholar 

  3. Morón-Ríos A, Gómez-Cornelio S, Ortega-Morales BO, De la Rosa-García S, Partida-Martínez LP, Quintana P, Alayon-Gamboa JA, Cappello-Garcia S, González-Gómez S (2017) Interactions between abundant fungal species influence the fungal community assemblage on limestone. PLoS ONE 12:e0188443

    Article  Google Scholar 

  4. González-Gómez WS, Quintana P, Gómez-Cornelio S, García-Solis C, Sierra-Fernandez A, Ortega-Morales O, De la Rosa-García SC (2018) Calcium oxalates in biofilms on limestone walls of Maya buildings in Chichén Itzá, Mexico. Environ Earth Sci 77:230

    Article  Google Scholar 

  5. Gómez-Cornelio S, Mendoza-Vega J, Gaylarde CC, Reyes-Estebanez M, Morón-Ríos A, De la Rosa-García SC, Ortega-Morales BO (2012) Succession of fungi colonizing porous and compact limestone exposed to subtropical environments. Fungal Biol 116:1064–1072

    Article  Google Scholar 

  6. De la Rosa-García SC, Ortega-Morales O, Gaylarde CC, Beltrán-García M, Quintana-Owen P, Reyes-Estebanez M (2011) Influence of fungi in the weathering of limestone of Mayan monuments. Rev Mex Micol 33:43–51

    Google Scholar 

  7. Gómez-Ortíz NM, González-Gómez WS, De la Rosa-García SC, Oskam G, Quintana P, Soria-Castro M, Gómez-Cornelio S, Ortega-Morales BO (2014) Antifungal activity of Ca[Zn(OH)3]2 2H2O coatings for the preservation of limestone monuments: an in vitro study. Int Biodeterior Biodegr 91:1–8

    Article  Google Scholar 

  8. Yang H, Zhang H, Wang X, Wang J, Meng X, Zhou Z (2004) Calcium zincate synthesized by ball milling as a negative material for secondary alkaline batteries. J Electrochem Soc 151:A2126–A2131

    Article  Google Scholar 

  9. Yang C-C, Chien W-C, Chen P-W, Wu C-Y (2009) Synthesis and characterization of nano-sized calcium zincate powder and its application to Ni-Zn batteries. J Appl Electrochem 39:39–41

    Article  Google Scholar 

  10. Sharma RA (1986) Physico-chemical properties of calcium zincate. J Electrochem Soc 133:2215–2219

    Article  Google Scholar 

  11. Lin TC, Mollah MYA, Vempati RK, Cocke DL (1995) Synthesis and characterization of calcium hydroxyzincate using X-ray diffraction, FT-IR spectroscopy, and scanning force microscopy. Chem Mater 7:1974–1978

    Article  Google Scholar 

  12. Xavier CS, Sczancoski JC, Cavalcante LS, Paiva-Santos CO, Varela JA, Longo E, Li MS (2009) A new processing method of CaZn2(OH)6·2H2O powders: photoluminescence and growth mechanism. Solid State Sci 11:2173–2179

    Article  Google Scholar 

  13. Qu J, Zhang Q, Li X, He X, Song S (2016) Mechanochemical approaches to synthesize layered double hydroxides: a review. Appl Clay Sci 119:185–192

    Article  Google Scholar 

  14. Scalise V, Scholz G, Kemnitz E (2016) Mechanochemical synthesis of low-fluorine doped aluminum hydroxide fluorides. J Solid State Chem 243:154–161

    Article  Google Scholar 

  15. Fahami A, Beall GW, Enayatpour S, Tavangarian F, Fahami M (2017) Rapid preparation of nano hexagonal-shaped hydrocalumite via one-pot mechanochemistry method. Appl Clay Sci 136:90–95

    Article  Google Scholar 

  16. Pavel OD, Zavoianu R, Birjega R, Angelescu E, Parvulescu VI (2017) Mechanochemical versus co-precipitated synthesized lanthanum-doped layered materials for olefin oxidation. Appl Catal A-Gen 542:10–20

    Article  Google Scholar 

  17. Qu J, He X, Li X, Ai Z, Li Y, Zhang Q, Liu X (2017) Precursor preparation of Zn-Al layered double hydroxide by ball milling for enhancing adsorption and photocatalytic decoloration of methyl orange. RSC Adv 7:31466–31474

    Article  Google Scholar 

  18. Qu J, He X, Chen M, Huang P, Zhang Q, Liu X (2017) A facile mechanochemical approach to synthesize Zn-Al layered double hydroxide. J Solid State Chem 250:1–5

    Article  Google Scholar 

  19. Pagano C, Marmottini F, Nocchetti M, Ramella D, Perioli L (2018) Effects of different milling techniques on the layered double hydroxides final properties. Appl Clay Sci 151:124–133

    Article  Google Scholar 

  20. Kosova NV, Kh Khabibulin A, Boldyrev VV (1997) Hydrothermal reactions under mechanical treatment. Solid State Ion 101–103:53–58

    Article  Google Scholar 

  21. Boldyrev VV (2002) Hydrothermal reactions under mechanochemical action. Powder Technol 122:247–254

    Article  Google Scholar 

  22. Senna M (1993) Incipient chemical interaction between fine particles under mechanical stress-a feasibility of producing advanced materials via mechanochemical routes. Solid State Ion 63–65:3–9

    Article  Google Scholar 

  23. Avvakumov E, Senna M, Kosova N (2002) Soft mechanochemical synthesis: a basis for new chemical technologies. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  24. Talari MK, Majeed ABA, Tripathi DK, Tripathy M (2012) Synthesis, characterization and antimicrobial investigation of mechanochemically processed silver doped ZnO nanoparticles. Chem Pharm Bull 60:818–824

    Article  Google Scholar 

  25. Zhang L, Tan PY, Chow CL, Lim CK, Tan OK, Tse MS, Sze CC (2014) Antibacterial activities of mechanochemically synthesized perovskite strontium titanate ferrite metal oxide. Colloids Surf A Physicochem Eng Asp 456:169–175

    Article  Google Scholar 

  26. Manzoor U, Siddique S, Ahmed R, Noreen Z, Bokhari H, Ahmad I (2016) Antibacterial, structural and optical characterization of mechano-chemically prepared ZnO nanoparticles. PLoS ONE 11:e0154704

    Article  Google Scholar 

  27. Banoee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shahverdi HR, Moballegh A, Moghaddam KM, Shahverdi AR (2010) ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J Biomed Mater Res B 93:557–561

    Article  Google Scholar 

  28. Espitia PJP, Soares NDFF, Teófilo RF, Vitor DM, dos Reis Coimbra JS, de Andrade NJ, de Sousa FB, Sinisterra RD, Medeiros EAA (2013) Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms. J Nanopart Res 15:1324

    Article  Google Scholar 

  29. Sierra-Fernandez A, De la Rosa-García SC, Gomez-Villalba LS, Gómez-Cornelio S, Rabanal ME, Fort R, Quintana P (2017) Synthesis, photocatalytic, and antifungal properties of MgO, ZnO and Zn/Mg oxide nanoparticles for the protection of calcareous stone heritage. ACS Appl Mater Interfaces 9:24873–24886

    Article  Google Scholar 

  30. Sierra-Fernandez A, Gomez-Villalba LS, De la Rosa-García SC, Gomez-Cornelio S, Quintana P, Rabanal ME, Fort R (2018) Inorganic nanomaterials for the consolidation and antifungal protection of stone heritage. In: Hosseini M, Karapanagiotis I (eds) Advanced materials for the conservation of stone. Springer, Cham, pp 125–149

    Chapter  Google Scholar 

  31. Gómez-Cornelio S, Ortega-Morales O, Morón-Ríos A, Reyes-Estebanez M, De la Rosa-García S (2016) Changes in fungal community composition of biofilms on limestone across a chronosequence in Campeche, Mexico. Acta Bot Mex 117:59–77

    Article  Google Scholar 

  32. Daniele V, Taglieri G, Quaresima R (2008) The nanolimes in cultural heritage conservation: characterisation and analysis of the carbonatation process. J Cult Herit 9:294–301

    Article  Google Scholar 

  33. CLSI (1999) Methods for determining bactericidal activity of antimicrobial agents; approved guideline. CLSI document M26-A. CLSI, Wayne, PA

  34. Zhu X-M, Yang H-X, Ai X-P, Yu J-X, Cao Y-L (2003) Structural and electrochemical characterization of mechanochemically synthesized calcium zincate as rechargeable anodic materials. J Appl Electrochem 33:607–612

    Article  Google Scholar 

  35. Wang S, Yang Z, Zeng L (2008) Study of calcium zincate synthesized by solid-phase synthesis method without strong alkali. Mater Chem Phys 112:603–606

    Article  Google Scholar 

  36. Rubio-Caballero JM, Santamaría-González J, Mérida-Robles J, Moreno-Tost R, Jiménez-López A, Maireles-Torres P (2009) Calcium zincate as precursor of active catalysts for biodiesel production under mild conditions. Appl Catal B-Environ 91:339–346

    Article  Google Scholar 

  37. Hao J, Yang C-C, Zhao F (2014) A facile route for the preparation of calcium zincate and its application in Ni-Zn batteries. J Electrochem Soc 161:A704–A707

    Article  Google Scholar 

  38. Shi LE, Li ZH, Zheng W, Zhao YF, Jin YF, Tang ZX (2014) Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Addit Contam Part A 31:173–186

    Article  Google Scholar 

  39. Ogar A, Tylko G, Turnau K (2015) Antifungal properties of silver nanoparticles against indoor mould growth. Sci Total Environ 521:305–314

    Article  Google Scholar 

  40. Gambino M, Ahmed MAAA, Villa F, Cappitelli F (2017) Zinc oxide nanoparticles hinder fungal biofilm development in an ancient Egyptian tomb. Int Biodeterior Biodegr 122:92–99

    Article  Google Scholar 

  41. Peulen TO, Wilkinson KJ (2011) Diffusion of nanoparticles in a biofilm. Environ Sci Technol 45:3367–3373

    Article  Google Scholar 

  42. Savi GD, Bortoluzzi AJ, Scussel VM (2013) Antifungal Properties of Zinc-Compounds Against Toxigenic Fungi and Mycotoxin. Int J Food Sci Technol 48:1834–1840

    Article  Google Scholar 

  43. Pombeiro-Sponchiado SR, Sousa GS, Andrade JC, Lisboa HF, Gonçalves RC (2017) Production of melanin pigment by fungi and its biotechnological applications. In: Blumenberg M (ed) Melanin. InTech. pp 47-74

  44. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  Google Scholar 

  45. Adak D, Sarkar M, Maiti M, Tamang A, Mandal S, Chattopadhyay B (2015) Anti-microbial efficiency of nano silver–silica modified geopolymer mortar for eco-friendly green construction technology. RSC Adv 5:64037–64045

    Article  Google Scholar 

  46. Ditaranto N, van der Werf ID, Picca RA, Sportelli MC, Giannossa LC, Bonerba E, Tantillo G, Sabbatini L (2015) Characterization and behaviour of ZnO-based nanocomposites designed for the control of biodeterioration of patrimonial stoneworks. New J Chem 39:6836–6843

    Article  Google Scholar 

  47. Baglioni P, Giorgi R (2006) Soft and hard nanomaterials for restoration and conservation of cultural heritage. Soft Matter 2:293–303

    Article  Google Scholar 

  48. La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Palermo AM, Guzzi MT, Crisci GM (2012) Multifunctional TiO2 coatings for cultural heritage. Prog Org Coat 74:186–191

    Article  Google Scholar 

  49. Gomez-Ortiz N, De la Rosa-Garcia SC, Gonzalez-Gomez WS, Soria-Castro M, Quintana P, Oskam G, Ortega-Morales BO (2013) Antifungal coatings based on Ca(OH)2 mixed with ZnO/TiO2 nanomaterials for protection of limestone monuments. ACS Appl Mater Interfaces 5:1556–1565

    Article  Google Scholar 

  50. van der Werf ID, Ditaranto N, Picca RA, Sportelli MC, Sabbatini L (2015) Development of a novel conservation treatment of stone monuments with bioactive nanocomposites. Herit Sci 3:29

    Article  Google Scholar 

  51. Ruffolo SA, De Leo F, Ricca M, Arcudi A, Silvestri C, Bruno L, Urzí C, La Russa MF (2017) Medium-term in situ experiment by using organic biocides and titanium dioxide for the mitigation of microbial colonization on stone surfaces. Int Biodeter Biodegr 123:17–26

    Article  Google Scholar 

  52. Shirakawa MA, Gaylarde CC, Sahão HD, Lima JRB (2013) Inhibition of Cladosporium growth on gypsum panels treated with nanosilver particles. Int Biodeter Biodegr 85:57–61

    Article  Google Scholar 

  53. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90:213902

    Article  Google Scholar 

  54. Badawy AM, Scheckel KG, Suidan M, Tolaymat T (2012) The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles. Sci Total Environ 429:325–331

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from CONACyT through Projects No. 138 “Fronteras de la Ciencia” and No. 225962, CONACYT-INFRA 2014-UJAT-DAIA. Also, the authors thank to the technical assistance provided by Y. Román during the antifungal assays, also to Ing. S. García López for its support with TEM (Centro de Investigación en Ciencia y Tecnología Aplicada de Tabasco), to S. H. Cortés de León for his help in preparing the samples, and to M.Sc. D. Huerta and M.Sc. D. Aguilar for the assistance in the SEM images and XRD, respectively. Finally, we also thank Allison Marie Jermain for reviewing the English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Quintana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De la Rosa-García, S.C., Fuentes, A.F., Gómez-Cornelio, S. et al. Structural characterization of antifungal CaZn2(OH)6·2H2O nanoparticles obtained via mechanochemical processing. J Mater Sci 53, 13758–13768 (2018). https://doi.org/10.1007/s10853-018-2327-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2327-z

Keywords

Navigation