Skip to main content

Advertisement

Log in

Zn-containing Wollastonite with Well-defined Microstructural and Good Antifungal Activity

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Antimicrobial and antifungal materials we prepared from Zn-containing wollastonite set by wet precipitation method. Wollastonite, hardystonite, willemite and very little quartz were developed after sintering at 1100 °C/2 h, however, the Raman spectroscopy approved the later phases by their characteristic Raman shift bands. The microstructure exhibited accumulated rounded to irregular clusters containing nano-size particles (< 500 nm) developed in all sintered samples. Zeta potential; exposed negative values for all powdered samples from -2.64 to -17.6 mV (i.e., for Zn-free to highest Zn-containing samples). It can be easily noticed that the lowest ZnO-content exhibits a varied range of antibacterial activities in contrast to Gram-negative (E. coli) and Gram-positive (S. aureus & B. subtilis). Correspondingly, the CZS5 exhibits good inhibitory effect against the filamentous pathogenic fungus (A. niger).

Highlights

Wollastonite powder containing ZnO was prepared by wet method.

Wollastonite, hardystonite, willemite and little quartz were developed in sintered at 1100 °C/2 h.

The powder has wide effect on the A.niger fungi in the high ZnO-containing powder.

The powder can also inhabit the growth of gram-positive and gram-negative bacteria.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Hughes E, Yanni T, Jamshidi P, Grover LM (2015) Inorganic cements for biomedical application: calcium phosphate, calcium sulphate and calcium silicate. Adv Appl Ceram 114(2):65–76. https://doi.org/10.1179/1743676114Y.0000000219

    Article  CAS  Google Scholar 

  2. Sha S, Qiu F, Li S, Liu J, Xu H, Tang J, Zhang Y (2021) A modified calcium silicate composite bone cement prepared from polyethylene glycol and graphene oxide for biomaterials. Mater Today Commun 27:102431. https://doi.org/10.1016/j.mtcomm.2021.102431

    Article  CAS  Google Scholar 

  3. Eldera SS, Alsenany N, Al Dawsari S, El-Bassyouni GT, Hamzawy EMA (2022) Characterization, Biocompatibility and In-Vivo of Nominal MnO2-Containing Wollastonite Glass. Nanotechnol Rev 11:2800–2813. https://doi.org/10.1515/ntrev-2022-0477

    Article  CAS  Google Scholar 

  4. Maleki-Ghaleh H, Siadati MH, Fallah A, Koc B, Kavanlouei M, Khademi-Azandehi P, Moradpur-Tari E, Omidi Y, Barar J, Beygi-Khosrowshahi Y, Kumar AP, Adibkia Kh (2021) Antibacterial and Cellular Behaviors of Novel Zinc-Doped Hydroxyapatite/Graphene Nanocomposite for Bone Tissue Engineering. Int J Mol Sci 22(17):9564. https://doi.org/10.3390/ijms22179564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abd El-Aty AA, Kenawy SH, El-Bassyouni GT, Hamzawy EMA (2018) CuO Doped Wollastonite Clusters for Some Anti-microbial and Anti-Fungi Applications. Pharm Lett 10(5):42–54

    CAS  Google Scholar 

  6. Moussa A, Elkady AM, Nabil A, Zaki D, El Gamily H, Ramzy M, El-Bassyouni GT (2018( Antimicrobial properties of tissue conditioner containing silver doped bioactive glass nanoparticles: In vitro study. Adv Natl Sci Nanosci Nanotechnol. 9(3), 035003: 10 pages

  7. Lu T, Zhan J, Yuan X, Tang C, Wang X, Zhang Y, Xiong K, Ye J (2021) Enhanced osteogenesis and angiogenesis of calcium phosphate cement incorporated with zinc silicate by synergy effect of zinc and silicon ions. Mater Sci Eng C 131:112490. https://doi.org/10.1016/j.msec.2021.112490

    Article  CAS  Google Scholar 

  8. Eltohamy M, Kundu B, Moon J, Lee H-Y, Kim H-W (2018) Anti-bacterial zinc-doped calcium silicate cements: Bone filler. Ceram Int 44(11):13031–13038. https://doi.org/10.1016/j.ceramint.2018.04.122

    Article  CAS  Google Scholar 

  9. Zhang Y, Li X, Li J, Khan MZH, Ma F, Liu X (2021) A novel zinc complex with antibacterial and antioxidant activity. BMC Chemistry 15:17. https://doi.org/10.1186/s13065-021-00745-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. El-Bassyouni GT, Kenawy SH, Abd El-Aty AA, Hamzawy EMA, Turky GM (2022) Influence of Zinc Oxide Doped-Hydroxyapatite: Phase, Electrical, Biocompatibility and Antimicrobial Assessment. J Mol Struct 1268(1):133700. https://doi.org/10.1016/j.molstruc.2022.133700

    Article  CAS  Google Scholar 

  11. Wang XP, Li X, Ito A, Sogo Y (2011) Synthesis and characterization of hierarchically macroporous and mesoporous CaO–MO–SiO2–P2O5 (M=Mg, Zn, Sr) bioactive glass scaffolds. Acta Biomater 7(10):3638–3644. https://doi.org/10.1016/j.actbio.2011.06.029

    Article  CAS  PubMed  Google Scholar 

  12. Esteban-Tejeda L, Prado C, Cabal B, Sanz J, Torrecillas R, Moya JS (2015) Antibacterial and Antifungal Activity of ZnO Containing Glasses. PLoS ONE 10(7):e0132709. https://doi.org/10.1371/journal.pone.0132709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Lucas-Gil E, Leret P, Monte-Serrano M, Reinosa JJ, Enríquez E, Del Campo A, Cañete M, Menéndez J, Fernández JF, Rubio-Marcos F (2018) ZnO Nanoporous Spheres with Broad-Spectrum Antimicrobial Activity by Physicochemical Interactions. ACS Appl Nano Mater 1(7):3214–3225. https://doi.org/10.1021/acsanm.8b00402

    Article  CAS  Google Scholar 

  14. Li HC, Wang DG, Chen CZ (2015) Effect of zinc oxide and zirconia on structure, degradability and in vitro bioactivity of wollastonite. Ceram Int 41:10160–10169. https://doi.org/10.1016/j.ceramint.2015.04.117

    Article  CAS  Google Scholar 

  15. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters 7(3):219–242. https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  PubMed  Google Scholar 

  16. Hanna AA, Khorshed LA, El-Beih AA, Sherief MA, El-Kheshen AA, El-Bassyouni GT (2019) Synthesis, bioactivity and antimicrobial studies on zinc oxide incorporated into Nanohydroxyapatite. Egypt. J Chem 62:133–143. https://doi.org/10.21608/ejchem.2019.12988.1812

    Article  Google Scholar 

  17. Lallo da Silva B, Abuçafy MP, Manaia EB, Oshiro Junior JA, Chiari-Andréo BG, Pietro R, Chiavacci LA (2019) Relationship Between Structure and Antimicrobial Activity of Zinc Oxide Nanoparticles: An Overview. Intl J Nanomed 14:9395–9410. https://doi.org/10.2147/IJN.S216204

    Article  Google Scholar 

  18. Mabrouk M, Mousa SM, AbdElGhany WA, Abo-elfadl MT, El-Bassyouni GT (2021) Bioactivity and cell viability of Ag+- and Zr4+ - co-doped biphasic calcium phosphate. Appl Phys A 127:948. https://doi.org/10.1007/s00339-021-05051-1

    Article  CAS  Google Scholar 

  19. Mahdy MA, El Zawawi IK, Kenawy SH, Hamzawy EMA, El-Bassyouni GT (2022) Effect of zinc oxide on wollastonite: Structural, optical, and mechanical properties. Ceram Int 48:7218–7231. https://doi.org/10.1016/j.ceramint.2021.11.282

    Article  CAS  Google Scholar 

  20. El-Batal FH, El-Kheshen AA, El-Bassyouni GT, Abd El Aty AA (2018) In Vitro Bioactivity Behavior of some Borate Glasses and their Glass-Ceramic Derivatives Containing Zn2+, Ag+ or Cu2+ by Immersion in Phosphate Solution and their Anti-Microbial Activity. SILICON 10:943–957. https://doi.org/10.1007/s12633-017-9552-y

    Article  CAS  Google Scholar 

  21. El-Bassyouni GT, Turky GM, Kenawy SH, Abd El-Aty AA, Hamzawy EMA (2021) Effect of Yttrium Oxide in Hydroxyapatite Biocomposite Materials: Phase, Electrical and Antimicrobial Evaluation. ECS J Solid State Sci Technol 10(12):123014. https://doi.org/10.1149/2162-8777/ac44f6

    Article  CAS  Google Scholar 

  22. Turlybekuly A, Pogrebnjak AD, Sukhodub LF, Sukhodub LB, Kistaubayeva AS, Savitskaya IS, Shokatayeva DH, Bondar OV, Shaimardanov ZK, Plotnikov SV, Shaimardanova BH, Digel I (2019) Synthesis, characterization, in vitro biocompatibility and antibacterial properties study of nanocomposite materials based on hydroxyapatite biphasic ZnO micro- and nanoparticles embedded in Alginate matrix. Mater Sci Eng C 104:109965. https://doi.org/10.1016/j.msec.2019.109965

    Article  CAS  Google Scholar 

  23. Buzatu A, Buzgar N, The Raman study of single-chain silicates. Analele Stiintifice de Universitatii AI Cuza din Iasi. Sect. 2, Geologie 56(1) (2010) 107

  24. Louisnathan SJ (1969) Refinement of the crystal structure of hardystonite, Ca2ZnSi2O7. Z Kristallogr 130(8):427–437. https://doi.org/10.1524/zkri.1969.130.16.427

    Article  CAS  Google Scholar 

  25. Lin CC, Shen P (1994) Sol-gel synthesis of zinc orthosilicate. J Non-Crystall Solids 171(3):281–289. https://doi.org/10.1016/0022-3093(94)90197-X

    Article  CAS  Google Scholar 

  26. Jasinevicius R 2009. Characterization of vibrational and electronic features in the Raman spectra of gem minerals. MSc Thesis, Department of Geosciences, University of Arizona, Tucson, AZ, USA

  27. Serrano-Lotina A, Portela R, Baeza P, Alcolea-Rodriguez V, Villarroel M, Avila P, Zeta potential as a tool for functional materials development. Catalysis Today, Available online 3 August (2022)

  28. Muedra P, Forner L, Lozano A, Sanz J, Rodríguez-Lozano F, Guerrero-Gironés J, Riccitiello F, Spagnuolo G, Llena C (2021) Could the calcium silicate-based sealer presentation form influence dentinal sealing? An in vitro confocal laser study on tubular penetration. Materials (Basel) 14(3) 659, doi:https://doi.org/10.3390/ma14030659

  29. Singh P, Nanda A (2013) Antimicrobial and antifungal potential of zinc oxide nanoparticles in comparison to conventional zinc oxide particles. J Chem Pharm Res 5(11):457–463

    Google Scholar 

  30. A. Hojjati-Najafabadi, F. Davar, Z. Enteshari, M. Hosseini-Koupae, Antibacterial and photocatalytic behavior of green synthesis of Zn0.95 Ag0.05O nanoparticles using herbal medicine extract. Ceram. Int. 47(22) (2021) 31617–31624, doi:https://doi.org/10.1016/j.ceramint.2021.08.042

  31. A. Mohsen, H.A. Abdel-Gawwad, M. Ramadan, Performance, radiation shielding, and anti-fungal activity of alkali-activated slag individually modified with zinc oxide and zinc ferrite nano-particles, Construction and Building Materials 257 (2020) 119584, https://doi.org/10.1016/j.conbuildmat.2020.119584.

Download references

Acknowledgements

This work did not take any specific grant from different funding agencies. The authors gratefully acknowledge the National Research Centre (NRC) for supporting this study with the aid of its facilities. The authors thanks all who helped us.

Funding

Financial interests or personal relationships are not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Esmat M.A. Hamzawy and Gehan T. El-Bassyouni prepared samples, tested their XRD, FE-SEM, Zeta potential and Raman spectroscopy. Abeer A. Abd El-Aty and Sutrisnawati Mardin carried out antibacterial and antifungal testing. All the authors contributed in discussing the results and writing the original manuscript.

Corresponding author

Correspondence to Esmat M. A. Hamzawy.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardin, S., Hamzawy, E.M.A., Abd El‑Aty, A. et al. Zn-containing Wollastonite with Well-defined Microstructural and Good Antifungal Activity. Silicon 15, 4653–4662 (2023). https://doi.org/10.1007/s12633-023-02360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02360-3

Keywords

Navigation