Skip to main content
Log in

Enhanced dielectric constant and structural transformation in Fe-doped hydroxyapatite synthesized by wet chemical method

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report the synthesis of single-phase Fe-doped hydroxyapatite (HAp) [Ca10−xFe x (PO4)6(OH)2 (0.0 ≤ x ≤ 0.3)] and enhanced dielectric constant of HAp with Fe doping. Rietveld analysis shows the change in x-axis-oriented lattice constant a in Fe-doped x = 0.1 and 0.3 compositions in comparison with parent HAp, while z-axis-oriented lattice constant c does not show any considerable change. Analysis of absorbance data shows two new symmetric stretching peaks for Fe-doped x = 0.1 and x = 0.3 compositions, which are not present in parent HAp. Magnetic measurements show paramagnetic behaviour of all Fe-doped samples at 300 K. Fe-doped Ca9.9Fe0.1(PO4)6(OH)2 composition shows increase in impedance in the presence of 500 Oersted (Oe) applied magnetic field in comparison with impedance in the absence of magnetic field. Ca9.9Fe0.1(PO4)6(OH)2 composition shows increase in dielectric constant in comparison with parent HAp in frequency range 5–35 MHz. Fe-doped Ca9.9Fe0.1(PO4)6(OH)2 composition shows ~ 970% colossal magnetoimpedance at 100 Hz and ~ 200% at 20 MHz frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kay M, Young R, Posner A (1964) Crystal structure of hydroxyapatite. Nature 204:1050–1052

    Article  Google Scholar 

  2. Han GG, Lee S, Kim DW, Kim DH, Noh JH, Park JH, Roy S, Ahn TK, Jung HS (2013) A simple method to control morphology of hydroxyapatite nano- and microcrystals by altering phase transition route. Cryst Growth Des 13:3414–3418

    Article  Google Scholar 

  3. Inoue K, Sassa K, Yokogawa Y, Sakka Y, Okido M, Asai S (2003) Control of crystal orientation of hydroxyapatite by imposition of a high magnetic field. Mater Trans 44:1133–1137

    Article  Google Scholar 

  4. Mahabole M, Aiyer R, Ramakrishan C, Sreedhar B, Khaimar R (2005) Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bull Mater Sci 28:535–545

    Article  Google Scholar 

  5. Jevtic M, Mitric M, Skapin S, Jancar B, Ignjatovic N, Uskokovic D (2008) Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation. Cryst Growth Des 8:2217–2222

    Article  Google Scholar 

  6. Singh B, Dubey AK, Kumar S, Saha N, Basu B, Gupta R (2011) In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10−xAgx(PO4)6(OH)2 (0.0 ≤ x ≤ 0.5) hydroxyapatites. Mater Sci Eng, C 31:1320–1329

    Article  Google Scholar 

  7. Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6:1882–1894

    Article  Google Scholar 

  8. Ning CQ, Zhou Y (2002) In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method. Biomaterials 23:2909–2915

    Article  Google Scholar 

  9. Goodwin CB, Brighton CT, Guyer RD, Johnson JR, Light KI, Yuan HA (1999) A double-blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine 24:1349–1356

    Article  Google Scholar 

  10. Scott G, King JB (1994) A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J Bone Joint Surg Am 76:820–826

    Article  Google Scholar 

  11. Yamashita K (2003) Enhanced bioactivity of electrically poled hydroxyapatite ceramics and coatings. Mater Sci Forum 426:3237–3242

    Article  Google Scholar 

  12. Otter MW, McLeod KJ, Rubin CT (1998) Effects of electromagnetic fields in experimental fracture repair. Clin Orthop Relat Res 335:S90–S112

    Article  Google Scholar 

  13. Xue W, Moore JL, Hosick HL, Bose S, Bandyopadhyay A, Lu W, Cheung KM, Luk KD (2006) Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. J Biomed Mater Res A 79:804

    Article  Google Scholar 

  14. Singh B, Kumar S, Basu B, Gupta R (2013) Enhanced ionic conduction in hydroxyapatites. Mater Lett 95:100–102

    Article  Google Scholar 

  15. Singh B, Kumar S, Basu B, Gupta R (2015) Conductivity studies of silver-, potassium-, and magnesium-doped hydroxyapatite. Int J Appl Ceram Technol 12:319–328

    Article  Google Scholar 

  16. Singh B, Kumar S, Saha N, Basu B, Gupta R (2015) Phase stability of silver particles embedded calcium phosphate bioceramics. Bull Mater Sci 38:525–529

    Article  Google Scholar 

  17. Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ (1998) Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med 9:129–134

    Article  Google Scholar 

  18. Bose S, Fielding G, Tarfer S, Bandypadhyay A (2013) Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol 31:594–605

    Article  Google Scholar 

  19. Williams R (1968) Role of transition metal ions (1/26) in biological processes. R Inst Chem Rev 1:13–38

    Article  Google Scholar 

  20. Xu H, Aguilar ZP, Yang LKM, Duan HXY, Wei H, Wang A (2011) Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials 32:9758–9765

    Article  Google Scholar 

  21. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(2009):2133–2148

    Article  Google Scholar 

  22. Pankhurst QA, Conolly J, Jones S, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167

    Article  Google Scholar 

  23. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304

    Article  Google Scholar 

  24. Soenen SJ, Himmelreich U, Nuytten N, Cuyper MD (2011) Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials 32:195–205

    Article  Google Scholar 

  25. Singh B (2015) Structural, transport, magnetic and magnetoelectric properties of CaMn1−xFe x O3−δ (0.0 ≤ x ≤ 0.4). RSC Adv 5:39938–39945

    Article  Google Scholar 

  26. Singh B (2015) Room temperature large positive and negative magnetocapacitance in CaMn0.95Fe0.05O3−δ. Mater Lett 156:76–78

    Article  Google Scholar 

  27. Singh B (2016) Ru4+ induced colossal magnetoimpedance in Ru doped perovskite manganite at room temperature. Phys Chem Chem Phys 18:12947–12951

    Article  Google Scholar 

  28. Chandra VS, Baskar G, Suganthi RV, Elayaraja K, Joshy MIA, Beaula WS, Mythili R, Venkatraman G, Kalkura SN (2012) Blood compatibility of iron-doped nanosize hydroxyapatite and its drug release. ACS Appl Mater Interfaces 4:1200–1210

    Article  Google Scholar 

  29. Kramer E, Staruch M, Morey-Oppenheim A, Jain M, Budnick J, Suib S, Wei M (2013) synthesis and characterization of iron substituted hydroxyapatite via a simple ion-exchange procedure. J Mater Sci 48:665–673. https://doi.org/10.1007/s10853-012-6779-2

    Article  Google Scholar 

  30. Panseri S, Cunha C, D’Alessandro T, Sandri M, Giavaresi G, Marcacci M, Hung CT, Tampieri A (2012) Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour. J Nanobiotechnol 10:32

    Article  Google Scholar 

  31. Zilm ME, Staruch M, Jain M, Wei M (2014) An intrinsically magnetic biomaterial with tunable magnetic properties. J Mater Chem B 2:7176–7185

    Article  Google Scholar 

  32. Arends J, Christoffersen J, Christoffersen MR, Eckert H, Fowler BO, Heughebaert JC, Nancollas GH, Yesinowski JP, Zawacki SJ (1987) A calcium hydroxyapatite precipitated from an aqueous solution: an international multimethod analysis. J Cryst Growth 84:515–532

    Article  Google Scholar 

  33. Chaudhry AA, Haque S, Kellici S, Boldrin P, Rehman I, Khalid FA, Darr JA (2006) Instant nano-hydroxyapatite: a continuous and rapid hydrothermal synthesis. Chem Commun 0:2286–2288

    Article  Google Scholar 

  34. Kaygilia O, Dorozhkin SV, Ates T, Al-Ghamdi AA, Yakuphanoglua F (2014) Dielectric properties of Fe doped hydroxyapatite prepared by sol–gel method. Ceram Int 40:9395–9402

    Article  Google Scholar 

  35. Tampieri A, D’Alessandro T, Sandri M, Sprio S, Landi E, Bertinetti L, Panseri S, Pepponi G, Goettlicher J, Bañobre-López M, Rivas J (2012) Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater 8:843–851

    Article  Google Scholar 

  36. Li Y, Widodo J, Lim S, Ooi CP (2012) Synthesis and cytocompatibility of manganese(II) and iron(III) substituted hydroxyapatite nanoparticles. J Mater Sci 47:754–763. https://doi.org/10.1007/s10853-011-5851-7

    Article  Google Scholar 

  37. Mene RU, Mahabole MP, Mohite KC, Khairnar RS (2014) Improved gas sensing and dielectric properties of Fe doped hydroxyapatite thick films: effect of molar concentrations. Mater Res Bull 50:227–234

    Article  Google Scholar 

  38. Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28:3043–3054

    Article  Google Scholar 

  39. Fowler BO (1974) Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem 13:194–204

    Article  Google Scholar 

  40. Geng Z, Cui Z, Li Z, Zhu S, Liang Y, Lu WW, Yang X (2015) Synthesis, characterization and the formation mechanism of magnesium- and strontium-substituted hydroxyapatite. J Mater Chem B 3:3738–3746

    Article  Google Scholar 

  41. Aza PND, Guitian F, Santos C, Aza SD, Cusco R, Artus L (1997) Vibrational properties of calcium phosphate compounds. 2. Comparison between hydroxyapatite and β-tricalcium phosphate. Chem Mater 9:916–922

    Article  Google Scholar 

  42. Phan M, Peng H (2008) Giant magnetoimedance materials: fundamentals and applications. Prog Mater Sci 53:323–420

    Article  Google Scholar 

  43. Ipatov M, Zhukova V, Zhukov A, Gonzalez J (2016) Current controlled switching of impedance in magnetic conductor with tilted anisotropy easy axis and its applications. Sci Rep 6(1–8):36180

    Article  Google Scholar 

Download references

Acknowledgements

B. Singh and A. Tandon thank University Grants Commission—Department of Atomic Energy, Consortium for Scientific Research (UGC-DAE, CSR), Indore Centre, India for providing facility for experiments and financial support to visit Indore centre. B. Singh also thanks Dr. Mukul Gupta, UGC-DAE, CSR, Indore centre for his help in collecting XRD data and Dr. R. J. Choudhary, UGC-DAE, CSR, Indore centre for magnetic measurements. Authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajendra Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Tandon, A., Pandey, A.K. et al. Enhanced dielectric constant and structural transformation in Fe-doped hydroxyapatite synthesized by wet chemical method. J Mater Sci 53, 8807–8816 (2018). https://doi.org/10.1007/s10853-018-2225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2225-4

Keywords

Navigation