Skip to main content
Log in

Synthesis and characterization of iron-substituted hydroxyapatite via a simple ion-exchange procedure

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA), the main inorganic component of natural bones, is widely studied as a biomaterial due to its excellent biocompatibility and osteoinductivity. The crystal structure of HA lends itself to a wide variety of substitutions and ion doping, which allows for tailoring of material properties. In this study, iron-doped HA was synthesized via a simple ion-exchange procedure and characterized thoroughly for crystal structure and phase purity using X-ray diffraction, energy-dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, and Fourier transform infrared spectroscopy. Magnetic properties were studied using vibrating sample magnetometer and superconducting quantum interference device analysis. Ion-exchange was attempted using both ferric and ferrous chloride iron solutions, but a substitution was only achieved using ferric chloride solution. The results showed that after iron substitution the powder retained characteristic apatite crystal structure and functional groups, but the iron-doped samples displayed paramagnetic properties, as opposed to the diamagnetism of pure HA. The effect of soaking time on iron content was also examined, and collectively X-ray diffraction and inductively coupled plasma atomic emission spectroscopy results suggested that an increase in soaking time led to an increase in iron content in the sample powder. Iron-substituted HA nanoparticles, a biomaterial with magnetic properties, could be a promising biomaterial to be used in a variety of biomedical fields, including magnetic imaging, drug delivery, or hyperthermia-based cancer treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) J Bone Miner Res 22:465

    Article  Google Scholar 

  2. Bowden VR, Greenberg CS (2010) Children and their families: the continuum of care. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  3. Ratner BD, Hoffman AS, Schoen FJ, Lemonds JE (2004) Biomaterials sciences: an introduction to materials in medicine. Elsevier, San Diego

    Google Scholar 

  4. Martini FH (2006) Fundamentals of anatomy & physiology. Pearson-Benjamin Cummings, San Francisco

    Google Scholar 

  5. Weiner S, Wagner HD (1998) Annu Rev Mater Res 28:271

    Article  CAS  Google Scholar 

  6. Park JB, Bronzino JD (2003) Biomaterials principles and applications. CRC Press, Boca Raton

    Google Scholar 

  7. Kay MI, Young RA (1964) Nature 204:1050

    Article  CAS  Google Scholar 

  8. Qu H, Vasiliev AV, Aindow M, Wei M (2005) J Mater Sci Mater Med 16:447

    Article  CAS  Google Scholar 

  9. Jiang M, Terra J, Rossi AM, Morales MA, Baggio Saitovitch EM, Ellis DE (2002) Phys Rev B 66:224107

    Article  Google Scholar 

  10. Wang J, Nonami T, Yubata K (2008) J Mater Sci Mater Med 19:2663

    Article  CAS  Google Scholar 

  11. Wu HA, Wang TW, Sun JS, Wang WH (2007) Nanotechnology 18:9

    Google Scholar 

  12. Morrissey R, Rodriguez-Lorenzo LM, Gross KA (2005) J Mater Sci Mater Med 16:387

    Article  CAS  Google Scholar 

  13. Gross KA, Jackson R, Cashion JD, Rodriguez-Lorenzo LM (2002) Eur Cells Mater 3:114

    Google Scholar 

  14. Prakash KH, Kumar R, Ooi CP, Sritharan T, Cheang P, Khor KA (2006) Mol Cell Biol 3:177

    Google Scholar 

  15. Cazalbou S, Eichert D, Ranz X, Drouet C, Combes C, Hamand MF, Rey C (2005) J Mater Sci Mater Med 16:405

    Article  CAS  Google Scholar 

  16. Biji A, Boanini E, Capuccini C, Gazzano M (2007) Inorg Chim Acta 360:1009

    Article  Google Scholar 

  17. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) J Phys D Appl Phys 36:R167

    Article  CAS  Google Scholar 

  18. Duguet E, Vasseur S, Mornet S, Devoisselle JM (2006) Nanomedicine 1:157

    Article  CAS  Google Scholar 

  19. Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V (2008) Biomaterials 29:4012

    Article  CAS  Google Scholar 

  20. Lu AH, Salabas EL, Schüth F (2007) Angew Chem Int Ed 46:1222

    Article  CAS  Google Scholar 

  21. Gupta AK, Gupta M (2005) Biomaterials 26:3995

    Article  CAS  Google Scholar 

  22. Li Y, Nam CT, Ooi CP (2009) J Phys 187:012024

    Google Scholar 

  23. Kothapelli C, Wei M, Vasiliev A, Shaw MT (2004) Acta Mater 52:5655

    Article  Google Scholar 

  24. Patel N, Best SM, Bonfield W (2005) J Aust Ceram Soc 41:1

    Google Scholar 

  25. Goldfarb D, Bernardo M, Strohmaier KG, Vaughan DEW, Thomann H (1994) J Am Chem Soc 116:6344

    Article  CAS  Google Scholar 

  26. Pon-On W, Meejoo S, Tang I-M (2008) Mater Res Bull 43:2137

    Article  CAS  Google Scholar 

  27. Low HR, Phonthammachai N, Maignon A, Stewart GA, Bastow TJ, Ma LL, White TJ (2008) Inorg Chem 47:11774

    Article  CAS  Google Scholar 

  28. Ennas G, Musinu A, Piccaluga G, Zedda D, Gatteschi D, Sangregorio C, Stanger JL, Concas G, Spano G (1998) Chem Mater 10:495

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the U.S. Department of Education Graduate Assistance In Areas of National Need (GAANN) Fellowship Program (P200A09315) and National Science Foundation (BES 0503315 and CBET-1133883) for their support of the research. AM and SS thank the US Department of Energy Office of Basic Energy Sciences Division of Chemical, Geological, and Biological Science under grant DE-FG02-86ER13622.A000 for support of this work. They would also like to thank Dr. Bill Hines for his assistance with the SQUID equipment, and Dr. Heng Zhang for his assistance with the XPS facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, E.R., Morey, A.M., Staruch, M. et al. Synthesis and characterization of iron-substituted hydroxyapatite via a simple ion-exchange procedure. J Mater Sci 48, 665–673 (2013). https://doi.org/10.1007/s10853-012-6779-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6779-2

Keywords

Navigation