Skip to main content
Log in

Ce/Sm co-doped hydroxyapatites: synthesis, characterization, and band structure calculation

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this paper, Ce/Sm co-doped hydroxyapatites (HAps) were synthesized by a wet chemical route. The amount of Ce was kept at constant at the value of at.% 0.4, and the second dopant of Sm was used at different amounts of at.% 0, 0.6, 1.2, and 1.8, respectively. The effects of these co-dopants on the crystal structure, morphology, and thermal properties of HAp were determined experimentally using X-ray diffraction (XRD), scanning electron microscopy (SEM), differential thermal analysis (DTA), and thermogravimetric analysis (TGA). Furthermore, the band structure of the prepared samples was modeled theoretically using the quantum calculations of the density of states and band structure. A gradual increase from 26.56 to 36.23 nm in the crystallite size was observed. Although the amounts of the co-dopants of Ce and Sm did not affect the thermal stability and microstructure of HAp, its crystal structure-related parameters were affected by the amount of these co-additives. The partial substitution of both co-dopants was detected. The 0.4Ce-1.2Sm-HAp sample may be considered as the best crystal structure with a steady-state. It was seen that the band structure and density of states were also affected by these co-dopants. The bandgap value decreased gradually from 4.6078 to 4.0477 eV due to these dopants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goldberg, M.A., Protsenko, P.V., Smirnov, V.V., Antonova, O.S., Smirnov, S.V., Konovalov, A.A., Vorckachev, K.G., Kudryavtsev, E.A., Barinov, S.M., Komlev, V.S.: The enhancement of hydroxyapatite thermal stability by Al doping. J. Mater. Res. Technol. 9(1), 76–88 (2020)

    CAS  Google Scholar 

  2. Shkir, M., Yahia, I.S., Kilany, M., Abutalib, M.M., AlFaify, S., Darwish, R.: Facile nanorods synthesis of KI:HAp and their structure-morphology, vibrational and bioactivity analyses for biomedical applications. Ceram. Int. 45(1), 50–55 (2019)

    CAS  Google Scholar 

  3. Albulym, O., Kaygili, O., Hussien, M.S.A., Zahran, H.Y., Kilany, M., Yahia, I.S., Bulut, N., Darwish, R., El-Kott, A.F.: Antimicrobial activity of Ga-doped hydroxyapatite nanostructures: synthesis, morphological, spectroscopic, and dielectric properties. J. Biomater. Tiss. Eng. 9(7), 881–889 (2019)

    Google Scholar 

  4. Kaygili, O., Keser, S., Selçuk, A.B., Bulut, N., Koytepe, S., Yahia, I.S., Ates, T.: The effects of gamma irradiation on dielectric properties of Ag/Gd co-doped hydroxyapatites. J. Mater. Sci. Mater. Electron. 30, 10443–10453 (2019)

    CAS  Google Scholar 

  5. Kaygili, O.: Combustion synthesis and characterization of Mg-based Fe-doped biphasic calcium phosphate ceramics. Appl. Phys. A Mater. Sci. Process. 125(6), 431 (2019)

    Google Scholar 

  6. Ramesh, S., Adzila, S., Jeffrey, C.K.L., Tan, C.Y., Purbolaksono, J., Noor, A.M., Hassan, M.A., Sopyan, I., Teng, W.D.: Properties of hydroxyapatite synthesize by wet chemical method. J. Ceram. Process. Res. 14(4), 448–452 (2013)

    Google Scholar 

  7. Cacciotti, I.: Cationic and anionic substitutions in hydroxyapatite. In: Antoniac, I.V. (ed.) Handbook of bioceramics and biocomposites, pp. 145–211. Springer, Cham (2016)

    Google Scholar 

  8. Tite, T., Popa, A.C., Balescu, L.M., Bogdan, I.M., Pasuk, I., Ferreira, J.M.F., Stan, G.E.: Cationic substitutions in hydroxyapatite: current status of the derived biofunctional effects and their in vitro interrogation methods. Materials. 11, 2081 (2018)

    Google Scholar 

  9. Arcos, D., Vallet-Regi, M.: Substituted hydroxyapatite coatings of bone implants. J. Mater. Chem. B. 8(9), 1781–1800 (2020)

    CAS  Google Scholar 

  10. Graziani, G., Boi, M., Bianchi, M.: A review on ionic substitutions in hydroxyapatite thin films: towards complete biomimetism. Coatings. 8, 269 (2018)

    Google Scholar 

  11. Šupová, M.: Substituted hydroxyapatites for biomedical applications: a review. Ceram. Int. 41(8), 9203–9231 (2015)

    Google Scholar 

  12. Ciobanu, C.S., Iconaru, S.L., Popa, C.L., Motelica-Heino, M., Predoi, D.: Evaluation of samarium doped hydroxyapatite, ceramics for medical application: antimicrobial activity. J. Nanomater. 2015(849216), (2015)

  13. Alicka, M., Sobierajska, P., Kornicka, K., Wiglusz, R.J., Marycz, K.: Lithium ions (li+) and nanohydroxyapatite (nHAp) doped with li+ enhance expression of late osteogenic markers in adipose-derived stem cells. Potential theranostic application of nHAp doped with li+ and co-doped with europium (III) and samarium (III) ions. Mater. Sci. Eng. C. 99, 1257–1273 (2019)

    CAS  Google Scholar 

  14. Morais, D.S., Coelho, J., Ferraz, M.P., Fernandes, M.H., Hussain, N.S., Santos, J.D., Lopes, M.A.: Samarium doped glass-reinforced hydroxyapatite with enhanced osteoblastic performance and antibacterial properties for bone tissue regeneration. J. Mater. Chem. B. 2(35), 5872–5881 (2014)

    CAS  Google Scholar 

  15. Iconaru, S.L., Stanciu, G.A., Hristu, R., Ghita, R.V.: Properties of samarium doped hydroxyapatite thin films deposited by evaporation. Rom. Rep. Phys. 69, 508 (2017)

    Google Scholar 

  16. Turculet, C.S., Prodan, A.M., Negoi, I., Teleanu, G., Popa, M., Andronescu, E., Beuran, M., Stanciu, G.A., Hristu, R., Badea, M.L., Iosif, A., Raita, S.M., Vineticu, N., Trusca, R., Lupescu, O.: Preliminary evaluation of the antifungal activity of samarium doped hydroxyapatite thin films. Rom. Biotech. Lett. 23(5), 13927–13932 (2018)

    CAS  Google Scholar 

  17. Lv, Y., Shi, Q., Jin, Y., Ren, H., Qin, Y., Wang, B., Song, S.: Preparation and luminescent properties of the antibacterial materials of the La3+ doped Sm3+hydroxyapatite. IOP Conf. Ser.: J. Phys. Conf. Ser. 986, 012010 (2018)

    Google Scholar 

  18. Sathishkumar, S., Louis, K., Shinyjoy, E., Gopi, D.: Tailoring the Sm/Gd-substituted hydroxyapatite coating on biomedical AISI 316L SS: exploration of corrosion resistance, protein profiling, osteocompatibility, and osteogenic differentiation for orthopedic implant applications. Ind. Eng. Chem. Res. 55(22), 6331–6344 (2016)

    CAS  Google Scholar 

  19. Kaygili, O., Dorozhkin, S.V., Keser, S.: Synthesis and characterization of Ce-substituted hydroxyapatite by sol–gel method. Mater. Sci. Eng. C. 42, 78–82 (2014)

    CAS  Google Scholar 

  20. Phatai, P., Futalan, C.M., Utara, S., Khemthong, P., Kamonwannasit, S.: Structural characterization of cerium-doped hydroxyapatite nanoparticles synthesized by an ultrasonic-assisted sol-gel technique. Respir. Physiol. 10, 956–963 (2018)

    Google Scholar 

  21. Ciobanu, C.S., Popa, C.L., Predoi, D.: Cerium-doped hydroxyapatite nanoparticles synthesized by the co-precipitation method. J. Serb. Chem. Soc. 81(4), 433–446 (2016)

    CAS  Google Scholar 

  22. Morais, D.S., Fernandes, S., Gomes, P.S., Fernandes, M.H., Sampaio, P., Ferraz, M.P., Santos, J.D., Lopes, M.A., Sooraj Hussain, N.: Novel cerium doped glass-reinforced hydroxyapatite with antibacterial and osteoconductive properties for bone tissue regeneration. Biomed. Mater. 10(5), 055008 (2015)

    CAS  Google Scholar 

  23. Sundarabharathi, L., Chinnaswamy, M., Ponnamma, D., Parangusan, H., Al-Maadeed, M.A.A.: Investigation of antimicrobial properties and in-vitro bioactivity of Ce3+-Sr2+ dual-substituted nano hydroxyapatites. J. Am. Ceram. Soc. 102, 144–157 (2019)

    CAS  Google Scholar 

  24. dos Santos, M.V.B., Rocha, L.B.N., Vieira, E.G., Oliveira, A.L., Lobo, A.O., de Carvalho, M.A.M., Osajima, J.A., Silva-Filho, E.C.: Development of composite scaffolds based on cerium doped-hydroxyapatite and natural gums—biological and mechanical properties. Mater. 12, 2389 (2019)

    Google Scholar 

  25. Ciobanu, G., Harja, M.: Cerium-doped hydroxyapatite/collagen coatings on titanium for bone implants. Ceram. Int. 45(2), 2852–2857 (2019)

    CAS  Google Scholar 

  26. Ozeki, K., Goto, T., Aoki, H., Masuzawa, T.: Characterization of Sr-substitutedhydroxyapatite thin film by sputteringtechnique from mixture targets ofhydroxyapatite and strontium apatite. Bio-Med. Mater. Eng. 24, 1447–1456 (2014)

    CAS  Google Scholar 

  27. Gritsch, L., Maqbool, M., Mourino, V., Ciraldo, F.E., Creswell, M., Jackson, P.R., Lovell, C., Boccaccini, A.R.: Chitosan/hydroxyapatite composite bone tissueengineering scaffolds with dual and decoupledtherapeutic ion delivery: copper and strontium. J. Mater. Chem. B. 7, 6109–6124 (2019)

    CAS  Google Scholar 

  28. Agid, R.S., Kaygili, O., Bulut, N., Dorozhkin, S.V., Ates, T., Koytepe, S., Ates, B., Ercan, I., İnce, T., Mahmood, B.K.: Investigation of the effects of Pr doping on the structural properties of hydroxyapatite: an experimental and theoretical study. J. Aust. Ceram. Soc. (2020). https://doi.org/10.1007/s41779-020-00495-9

  29. Kaygili, O.: Synthesis and characterization of Fe-containing biphasic calcium phosphate ceramics. J. Aust. Ceram. Soc. 55, 381–385 (2019)

    CAS  Google Scholar 

  30. Landi, E., Tampieri, A., Celotti, G., Sprio, S.: Densification behaviour and mechanisms of synthetic hydroxyapatites. J. Eur. Ceram. Soc. 20(14–15), 2377–2387 (2000)

    CAS  Google Scholar 

  31. Boanini, E., Gazzano, M., Bigi, A.: Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 6(6), 1882–1894 (2010)

    CAS  Google Scholar 

  32. Mahmood, B.K., Kaygili, O., Bulut, N., Dorozhkin, S.V., Ates, T., Koytepe, S., Gürses, C., Ercan, F., Kebiroglu, H., Agid, R.S., İnce, T.: Effects of strontium - erbium co-doping on the structural properties of hydroxyapatite: an experimental and theoretical study. Ceram. Int. 46(10), 16354–16363 (2020)

    CAS  Google Scholar 

  33. Gonçalves, N.S., Carvalho, J.A., Lima, Z.M., Sasaki, J.M.: Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening. Mater. Lett. 72, 36–38 (2012)

    Google Scholar 

  34. Stoch, A., Jastrzebski, W., Brozek, A., Trybalska, B., Cichocinska, M., Szarawara, E.: FTIR monitoring of the growth of the carbonate containing apatite layers from simulated and natural body fluids. J. Mol. Struct. 511-512, 287–294 (1999)

    CAS  Google Scholar 

  35. Goldberg, M., Gafurov, M., Makshakova, O., Smirnov, V., Komlev, V., Barinov, S., Kudryavtsev, E., Sergeeva, N., Achmedova, S., Mamin, G., Murzakhanov, F., Orlinskii, S.: Influence of Al on the structure and in vitro behavior of hydroxyapatite Nanopowders. J. Phys. Chem. B. 123(43), 9143–9154 (2019)

    CAS  Google Scholar 

  36. Smirnov, V.V., Barinov, S.M., Smirnov, S.V., Krylov, A.I., Antonova, O.S., Goldberg, M.A., Obolkina, T.O., Konovalov, A.A., Leonov, A.V.: Structure and thermal stability of lithium-substituted hydroxyapatite ceramics. Inorg. Mater. 55(7), 715–723 (2019)

    CAS  Google Scholar 

  37. Rajabnejadkeleshteri, A., Kamyar, A., Khakbiz, M., Lotfi Bakalani, Z., Basiri, H.: Synthesis and characterization of strontium fluor-hydroxyapatite nanoparticles for dental applications. Microchem. J. 153, 104485 (2020)

    CAS  Google Scholar 

  38. Kaygili, O., Keser, S., Al Orainy, R.H., Ates, T., Yakuphanoglu, F.: In vitro characterization of polyvinyl alcohol assisted hydroxyapatite derived by sol–gel method. Mater. Sci. Eng. C. 35, 239–244 (2014)

    CAS  Google Scholar 

  39. Mishra, V.K., Rai, S.B., Asthana, B.A., Parkash, O., Kumar, D.: Effect of annealing on nanoparticles of hydroxyapatite synthesized via microwave irradiation: structural and spectroscopic studies. Ceram. Int. 40(7), 11319–11328 (2014)

    CAS  Google Scholar 

  40. Eslami, H., Solati-Hashjin, M., Tahriri, M., Bakhshi, F.: Synthesis and characterization of nanocrystalline hydroxyapatite obtained by the wet chemical technique. Mater. Sci.-Pol. 28(1), 5–13 (2010)

    CAS  Google Scholar 

  41. Murray, M.G.S., Wang, J., Ponton, C.B., Marquis, P.M.: An improvement in processing of hydroxyapatite ceramics. J. Mater. Sci. 30, 3061–3074 (1995)

    CAS  Google Scholar 

  42. Sheikh, L., Tripathy, S., Nayar, S.: Biomimetic matrix mediated room temperature synthesis and characterization of nano-hydroxyapatite towards targeted drug delivery. RSC Adv. 6, 62556–62571 (2016)

    CAS  Google Scholar 

  43. Liu, Y., Ma, J., Zhang, S.: Synthesis and thermal stability of selenium-doped hydroxyapatite with different substitutions. Front. Mater. Sci. 9(4), 392–396 (2015)

    Google Scholar 

  44. Avakyan, L.A., Paramonova, E.V., Coutinho, J., Öberg, S., Bystrov, V.S., Bugaev, L.A.: Optoelectronics and defect levels in hydroxyapatite by first-principles. J. Chem. Phys. 148, 154706 (2018)

    Google Scholar 

  45. Slepko, A., Demkov, A.A.: First-principles study of the biomineral hydroxyapatite. Phys. Rev. B. 84(13), 134108 (2011)

    Google Scholar 

Download references

Funding

This work was supported by the Management Unit of Scientific Research Projects of Firat University (FÜBAP) (Project Number: FF.19.32) in Turkey. This study was derived from Gülay Vural’s MSc Thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Kaygili.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaygili, O., Vural, G., Keser, S. et al. Ce/Sm co-doped hydroxyapatites: synthesis, characterization, and band structure calculation. J Aust Ceram Soc 57, 305–317 (2021). https://doi.org/10.1007/s41779-020-00533-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00533-6

Keywords

Navigation