Skip to main content

Advertisement

Log in

Fabrication of hierarchical MoO3–PPy core–shell nanobelts and “worm-like” MWNTs–MnO2 core–shell materials for high-performance asymmetric supercapacitor

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Asymmetric supercapacitors (ASCs) are successfully developed with configuration of negative electrode using hierarchical MoO3–PPy core–shell nanobelts (MoO3–PPy) and positive electrode with “worm-like” MWNTs–MnO2 core–shell materials (CNTs–MnO2) in Na2SO4 aqueous electrolyte. The MoO3 nanobelts are prepared by a facile hydrothermal method and get significant improvement in specific capacitance with modification of PPy layer from 124 to 285 F/g. Furthermore, the optimized ASCs based on the MoO3–PPy//CNTs–MnO2 can achieve 1.8 V high voltage even in Na2SO4 aqueous solution and possess a high energy density of 21.03 Wh/kg at the power density of 0.22 kW/kg. Additionally, the ASCs exhibit excellent cycle stability, with 76% retention of its original value even after 10000 cycles. The ASCs are further demonstrated to light up a red light-emitting diode in series. These encouraging results indicate a promising application in the energy-storage devices with high power density and energy density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  Google Scholar 

  2. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  Google Scholar 

  3. Gogotsi Y, Simon P (2011) True performance metrics in electrochemical energy storage. Science 334:917–918

    Article  Google Scholar 

  4. Lu Q, Chen JGG, Xiao JQ (2013) Nanostructured electrodes for high-performance pseudocapacitors. Angew Chem Int Ed 52:1882–1889

    Article  Google Scholar 

  5. Chen LF, Huang ZH, Liang HW, Guan QF, Yu SH (2013) Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Adv Mater 25:4746–4752

    Article  Google Scholar 

  6. Fan ZJ, Yan J, Wei T, Zhi LJ, Ning GQ, Li TY, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375

    Article  Google Scholar 

  7. Tao JY, Liu NS, Rao JY, Ding LW, Bahrani MR, Li LY, Su J, Gao YH (2014) Series asymmetric supercapacitors based on free-standing inner-connection electrodes for high energy density and high output voltage. Nanoscale 6:15073–15079

    Article  Google Scholar 

  8. Shao YL, El-Kady MF, Lin CW, Zhu GZ, Marsh KL, Hwang JY, Zhang QH, Li YG, Wang HZ, Kaner RB (2016) 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv Mater 28:6719–6726

    Article  Google Scholar 

  9. Du PC, Liu HC, Yi C, Wang K, Gong X (2015) Polyaniline-modified oriented graphene hydrogel film as the free-standing electrode for flexible solid-state supercapacitors. ACS Appl Mater Interfaces 7:23932–23940

    Article  Google Scholar 

  10. Wang L, Yu J, Dong XT, Li X, Xie YZ, Chen SH, Li P, Hou HQ, Song YH (2016) Three-dimensional macroporous carbon/Fe3O4-doped porous carbon nanorods for high-performance supercapacitor. ACS Sustain Chem Eng 4:1531–1537

    Article  Google Scholar 

  11. Xiao X, Peng ZH, Chen C, Zhang CF, Beidaghi M, Yang ZH, Wu N, Huang YH, Miao L, Gogotsi Y, Zhou J (2014) Freestanding MoO3−x nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano Energy 9:355–363

    Article  Google Scholar 

  12. Zhou C, Zhang YW, Li YY, Liu JP (2013) Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078–2085

    Article  Google Scholar 

  13. Behm N, Brokaw D, Overson C, Peloquin D, Poler JC (2013) High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices. J Mater Sci 48:1711–1716. https://doi.org/10.1007/s10853-012-6929-6

    Article  Google Scholar 

  14. Wang L, Zheng YL, Chen SL, Ye YH, Xu FG, Tan HL, Li Z, Hou HQ, Song YH (2014) Three-dimensional kenaf stem-derived porous carbon/MnO2 for high-performance supercapacitors. Electrochim Acta 135:380–387

    Article  Google Scholar 

  15. Du PC, Lin L, Wang HX, Liu D, Wei WL, Li JG, Liu P (2017) Fabrication of porous polyaniline modified MWNTs core-shell structure for high performance supercapacitors with high rate capability. Mater Des 127:76–83

    Article  Google Scholar 

  16. Wang L, Yang H, Pan GX, Miao LF, Chen SH, Song YH (2017) Polyaniline-carbon nanotubes@zeolite imidazolate framework-67-carbon cloth hierarchical nanostructures for supercapacitor electrode. Electrochim Acta 240:16–23

    Article  Google Scholar 

  17. Lu XP, Hu YT, Wang L, Guo QH, Chen SL, Chen SH, Hou HQ, Song YH (2016) macroporous carbon/nitrogen-doped carbon nanotubes/polyaniline nanocomposites and their application in supercapacitors. Electrochim Acta 189:158–165

    Article  Google Scholar 

  18. Wang L, Ye YJ, Lu XP, Wen ZB, Li Z, Hou HQ, Song YH (2013) Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors. Sci Rep. https://doi.org/10.1038/srep03568

    Google Scholar 

  19. Anothumakkool B, Soni R, Bhange SN, Kurungot S (2015) Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor. Energy Environ Sci 8:1339–1347

    Article  Google Scholar 

  20. Zhai YP, Dou YQ, Zhao DY, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850

    Article  Google Scholar 

  21. Chen AB, Yu YF, Xing TT, Wang RJ, Zhang Y, Li Q (2015) Synthesis of graphitic carbon spheres for enhanced supercapacitor performance. J Mater Sci 50:5578–5582. https://doi.org/10.1007/s10853-015-9106-x

    Article  Google Scholar 

  22. Zhang F, Zhang TF, Yang X, Zhang L, Leng K, Huang Y, Chen YS (2013) A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ Sci 6:1623–1632

    Article  Google Scholar 

  23. Ghaffari M, Zhou Y, Xu HP, Lin MR, Kim TY, Ruoff RS, Zhang QM (2013) High-volumetric performance aligned nano-porous microwave exfoliated graphite oxide-based electrochemical capacitors. Adv Mater 25:4879–4885

    Article  Google Scholar 

  24. Chen W, Rakhi RB, Alshareef HN (2013) Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors. J Mater Chem A 1:3315–3324

    Article  Google Scholar 

  25. Peng H, Ma GF, Mu JJ, Sun KJ, Lei ZQ (2014) Low-cost and high energy density asymmetric supercapacitors based on polyaniline nanotubes and MoO3 nanobelts. J Mater Chem A 2:10384–10388

    Article  Google Scholar 

  26. Chang J, Jin MH, Yao F, Kim TH, Le VT, Yue HY, Gunes F, Li B, Ghosh A, Xie SS, Lee YH (2013) Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv Funct Mater 23:5074–5083

    Article  Google Scholar 

  27. Lu XH, Zeng YX, Yu MH, Zhai T, Liang CL, Xie SL, Balogun MS, Tong YX (2014) Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv Mater 26:3148–3155

    Article  Google Scholar 

  28. Wang FM, Zhan XY, Cheng ZZ, Wang ZX, Wang QS, Xu K, Safdar M, He J (2015) Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors. Small 11:749–755

    Article  Google Scholar 

  29. Ji HM, Liu XL, Liu ZJ, Yan B, Chen L, Xie YF, Liu C, Hou WH, Yang G (2015) In situ preparation of sandwich MoO3/C hybrid nanostructures for high-rate and ultralong-life supercapacitors. Adv Funct Mater 25:1886–1894

    Article  Google Scholar 

  30. Zhang X, Zeng XZ, Yang M, Qi YX (2014) Investigation of a branchlike MoO3/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors. ACS Appl Mater Interfaces 6:1125–1130

    Article  Google Scholar 

  31. Tang W, Liu LL, Tian S, Li L, Yue YB, Wu YP, Zhu K (2011) Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. Chem Commun 47:10058–10060

    Article  Google Scholar 

  32. Tang W, Liu LL, Zhu YS, Sun H, Wu YP, Zhu K (2012) An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO3 coated with PPy and LiMn2O4. Energy Environ Sci 5:6909–6913

    Article  Google Scholar 

  33. Hsu FH, Wu TM (2016) Poypyrrole/molybdenum trioxide/graphene nanoribbon ternary nanocomposite with enhanced capacitive performance as an electrode for supercapacitor. J Solid State Electrochem 20:691–698

    Article  Google Scholar 

  34. Tang W, Liu LL, Zhu YS, Sun H, Wu YP, Zhu K (2012) An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO3 coated with PPy and LiMn2O4. Energy Environ Sci 5:6909–6913

    Article  Google Scholar 

  35. Wang GX, Xu HF, Lu L, Zhao H, Tian Y, An WH (2016) High-voltage asymmetric supercapacitor based on MnO2 nanotubes//active carbon-multiwalled carbon nanotubes. J Appl Electrochem 46:1091–1097

    Article  Google Scholar 

  36. Wang FX, Liu ZC, Wang XW, Yuan XH, Wu XW, Zhu YS, Fu LJ, Wu YP (2016) A conductive polymer coated MoO3 anode enables an Al-ion capacitor with high performance. J Mater Chem A 4:5115–5123

    Article  Google Scholar 

  37. Zhang ZY, Liu SS, Xiao J, Wang S (2016) Fiber-based multifunctional nickel phosphide electrodes for flexible energy conversion and storage. J Mater Chem A 4:9691–9699

    Article  Google Scholar 

  38. Chen Y, Zhang Y, Geng D, Li R, Hong H, Chen J, Sun X (2011) One-pot synthesis of MnO2/graphene/carbon nanotube hybrid by chemical method. Carbon 49:4434–4442

    Article  Google Scholar 

  39. Reddy CVS, Walker EH Jr, Wen C, Mho S (2008) Hydrothermal synthesis of MoO3 nanobelts utilizing poly(ethylene glycol). J Power Sources 183:330–333

    Article  Google Scholar 

  40. Kostic R, Rakovic D, Stepanyan SA, Davidova IE, Gribov LA (1995) Vibrational spectroscopy of polypyrrole, theoretical study. J Chem Phys 102:3104–3109

    Article  Google Scholar 

  41. Blinova NV, Stejskal J, Trchova M, Prokes J, Omastova M (2007) Polyaniline and polypyrrole: a comparative study of the preparation. Eur Polym J 43:2331–2341

    Article  Google Scholar 

  42. Li L, Hu ZA, An N, Yang YY, Li ZM, Wu HY (2014) Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J Phys Chem C 118:22865–22872

    Article  Google Scholar 

  43. Wang YF, Yang XW, Qiu L, Li D (2013) Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate: the importance of nano-architecturing. Energy Environ Sci 6:477–481

    Article  Google Scholar 

  44. Du PC, Hu XW, Yi C, Liu HC, Liu P, Zhang HL, Gong X (2015) Self-powered electronics by integration of flexible solid-state graphene-based supercapacitors with high performance perovskite hybrid solar cells. Adv Funct Mater 25:2420–2427

    Article  Google Scholar 

  45. Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao S, Antonietti MM, Titirici M (2010) Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater 22:5202–5206

    Article  Google Scholar 

  46. Cong HP, Ren XC, Wang P, Yu SH (2013) Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ Sci 6:1185–1191

    Article  Google Scholar 

Download references

Acknowledgements

This project was granted financial support by the Natural Science Foundation of Gansu Province (Grant No. 1606RJYA249) and the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2017-99).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengcheng Du or Peng Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2700 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, P., Wei, W., Liu, D. et al. Fabrication of hierarchical MoO3–PPy core–shell nanobelts and “worm-like” MWNTs–MnO2 core–shell materials for high-performance asymmetric supercapacitor. J Mater Sci 53, 5255–5269 (2018). https://doi.org/10.1007/s10853-017-1927-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1927-3

Keywords

Navigation