Skip to main content

Advertisement

Log in

Plumage-like MnO2@NiCo2O4 core–shell architectures for high-efficiency energy storage: the synergistic effect of ultralong MnO2 “scaffold” and ultrathin NiCo2O4 “fluff”

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Here, we proposed a rational design of a plumage-like MnO2@NiCo2O4 core–shell architecture by a mild hydrothermal and chemical bath deposition method. The hierarchical structure comprises the stable “scaffold” of the MnO2 nanowires and the high-activity “fluff” of ultrathin NiCo2O4 nanosheets. Besides, considering the cost of nickel and cobalt elements, the content of NiCo2O4 was controlled within 50% in our design. The ideal MnO2@NiCo2O4-8h electrode achieved remarkable electrochemical performances with high specific capacity of 618.0 C g−1 at 1 A g−1, outstanding rate capability of 89% from 1 to 10 A g−1, and superior cycling stability of 71% after 5000 cycles. Furthermore, the synergy capacitance was also evaluated to be 360.7 C g−1 with a synergy efficiency of 58%. The smart design is suitable for constructing advanced electrode material for high-performance supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang GQ, Wu HB, Hoster HE, Chanpark MB, Lou XW (2012) Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ Sci 5:9453–9456

    Article  CAS  Google Scholar 

  2. Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong CP, Wang ZL (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14:731–736

    Article  CAS  Google Scholar 

  3. Wang L, Li Y, Xia M, Li Z, Chen Z, Ma Z, Qin X, Shao G (2017) Ni nanoparticles supported on graphene layers: an excellent 3D electrode for hydrogen evolution reaction in alkaline solution. J Power Sources 347:220–228

    Article  CAS  Google Scholar 

  4. Kim BC, Hong JY, Wallace GG, Park HS (2016) Flexible electronics: recent progress in flexible electrochemical capacitors: electrode materials, device configuration, and functions. Adv Energy Mater 5. https://doi.org/10.1002/aenm.201570117

    Article  Google Scholar 

  5. Yang W, Yang W, Song A, Sun G, Shao G (2017) 3D interconnected porous carbon nanosheet/carbon nanotube as polysulfides reservoir for high performance lithium-sulfur batteries. Nano 10:816–824. https://doi.org/10.1039/C7NR06805K

    Article  Google Scholar 

  6. Liu ZQ, Chen GF, Zhou PL, Li N, Su YZ (2016) Building layered NixCo2x (OH)6x nanosheets decorated three-dimensional Ni frameworks for electrochemical applications. J Power Sources 317:1–9

    Article  CAS  Google Scholar 

  7. Zhang R, Xing R, Jiao T, Ma K, Chen C, Ma G, Yan X (2016) Carrier-free, chemophotodynamic dual nanodrugs via self-assembly for synergistic antitumor therapy. ACS Appl Mater Interfaces 8:13262–13269

    Article  CAS  Google Scholar 

  8. Yin X, Sun G, Song A, Wang L, Wang Y, Dong H, Shao G (2017) A novel structure of Ni-(MoS2 /GO) composite coatings deposited on Ni foam under supergravity field as efficient hydrogen evolution reaction catalysts in alkaline solution. Electrochim Acta 249:52–63

    Article  CAS  Google Scholar 

  9. Xia H, Hong C, Li B, Zhao B, Lin Z, Zheng M, Savilov SV, Aldoshin SM (2015) Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. Adv Funct Mater 25:627–635

    Article  CAS  Google Scholar 

  10. Choi KM, Jeong HM, Park JH, Zhang YB, Kang JK, Yaghi OM (2014) Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 8:7451–7457

    Article  CAS  Google Scholar 

  11. Yang W, Yang W, Kong L, Song A, Qin X, Shao G (2018) Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition. Carbon 127:557–567

    Article  CAS  Google Scholar 

  12. Zhao H, Zhou M, Wen L, Lei Y (2015) Template-directed construction of nanostructure arrays for highly-efficient energy storage and conversion. Nano Energy 13:790–813

    Article  CAS  Google Scholar 

  13. Zhang Q, Li Y, Yang Q, Chen H, Chen X, Jiao T, Peng Q (2017) Distinguished Cr(VI) capture with rapid and superior capability using polydopamine microsphere: behavior and mechanism. J Hazard Mater 342:732–740

    Article  Google Scholar 

  14. Xu K, Yang J, Hu J (2018) Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors. J Colloid Interface Sci 511:456–462

    Article  CAS  Google Scholar 

  15. Chen LF, Lu Y, Yu L, Lou XW (2017) Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ Sci 10:1777–1783

    Article  CAS  Google Scholar 

  16. Lu Y, Li L, Chen D, Shen G (2017) Nanowire-assembled Co3O4@NiCo2O4 architectures for high performance all-solid-state asymmetric supercapacitors. J Mater Chem A 5:24981–24988

    Article  CAS  Google Scholar 

  17. Bu YG, Kushima A, Le Y, Li S, Ju L, Xiong WL (2017) Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors. Adv Mater 29:1605902

    Article  Google Scholar 

  18. Alrubaye S, Rajagopalan R, Dou SX, Cheng ZX (2017) Facile synthesis of reduced graphene oxide wrapped porous NiCo2O4 composite with superior performance as an electrode material for supercapacitors. J Mater Chem A 5:18989–18997

    Article  CAS  Google Scholar 

  19. Wang J, Zhong HX, Qin YL, Zhang XB (2013) An efficient three-dimensional oxygen evolution electrode. Angew Chem 52:5248–5253

    Article  CAS  Google Scholar 

  20. Su L, Gao L, Du Q, Hou L, Yin X, Feng M, Yang W, Ma Z, Shao G (2017) Formation of micron-sized nickel cobalt sulfide solid spheres with high tap density for enhancing pseudocapacitive properties. ACS Sustain Chem Eng 5:9945–9954

    Article  CAS  Google Scholar 

  21. Lee J, Dong HS, Jang J (2015) Polypyrrole-coated manganese dioxide with multiscale architectures for ultrahigh capacity energy storage. Energy Environ Sci 8:3030–3039

    Article  CAS  Google Scholar 

  22. Chen C, Yan D, Luo X, Gao W, Huang G, Han Z, Zeng Y, Zhu Z (2018) Construction of core-shell NiMoO4@Ni-Co-S nanorods as advanced electrodes for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.7b16271

    Article  CAS  Google Scholar 

  23. Zuo W, Xie C, Xu P, Li Y, Liu J (2017) A novel phase-transformation activation process toward Ni-Mn-O nanoprism arrays for 2.4 V ultrahigh-voltage aqueous supercapacitors. Adv Mater. https://doi.org/10.1002/adma.201703463

    Article  Google Scholar 

  24. Yan D, Wang W, Luo X, Chen C, Zeng Y, Zhu Z (2018) NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor. Chem Eng J 334:864–872

    Article  CAS  Google Scholar 

  25. Wei X, Gao Y, Xu W, Xuan H, Lan D, Chen Y, Pu X, Yan Z, Su J, Zhu Z (2014) Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo2O4 nanowires for high-performance supercapacitor. ACS Appl Mater Interfaces 6:19416–19423

    Article  Google Scholar 

  26. Li Q, Wang ZL, Li GR, Guo R, Ding LX, Tong YX (2012) Design and synthesis of MnO2/Mn/MnO2 sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Lett 12:3803–3807

    Article  CAS  Google Scholar 

  27. Tang C, Yin X, Gong H (2013) Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core–shell electrode. ACS Appl Mater Interfaces 5:10574–10582

    Article  CAS  Google Scholar 

  28. Lu Q (2011) Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposite. Angew Chem 50:6847–6850

    Article  CAS  Google Scholar 

  29. Kong D, Luo J, Wang Y, Ren W, Yu T, Luo Y, Yang Y, Cheng C (2014) Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: morphology control and electrochemical energy storage. Adv Funct Mater 24:3815–3826

    Article  CAS  Google Scholar 

  30. Yu L, Zhang G, Yuan C, Lou XW (2013) Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem Commun 49:137–139

    Article  CAS  Google Scholar 

  31. Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ (2011) Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater 23:2076–2081

    Article  CAS  Google Scholar 

  32. Xia H, Zhu D, Luo Z, Yu Y, Shi X, Yuan G, Xie J (2013) Hierarchically structured Co3O4@Pt@MnO2 nanowire arrays for high-performance supercapacitors. Sci Rep 3:2978

    Article  Google Scholar 

  33. Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9:1002–1006

    Article  CAS  Google Scholar 

  34. Yang W, Gao Z, Ma J, Zhang X, Wang J, Liu J (2013) Hierarchical NiCo2O4@NiO core–shell hetero-structured nanowire arrays on carbon cloth for a high-performance flexible all-solid-state electrochemical capacitor. J Mater Chem A 2:1448–1457

    Article  Google Scholar 

  35. Wu ZS, Ren W, Wang DW, Li F, Liu B, Cheng HM (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842

    Article  CAS  Google Scholar 

  36. Duay J, Sherrill SA, Zhe G, Gillette E, Sang BL (2013) Self-limiting electrodeposition of hierarchical MnO2 and M(OH)2/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties. ACS Nano 7:1200–1214

    Article  CAS  Google Scholar 

  37. Zhang Z, Bao F, Zhang Y, Feng L, Ji Y, Zhang H, Sun Q, Feng S, Zhao X, Liu X (2015) Formation of hierarchical CoMoO4 @MnO2 core–shell nanosheet arrays on nickel foam with markedly enhanced pseudocapacitive properties. J Power Sources 296:162–168

    Article  CAS  Google Scholar 

  38. Du Q, Su L, Hou L, Sun G, Feng M, Yin X, Ma Z, Shao G, Gao W (2018) Rationally designed ultrathin Ni-Al layered double hydroxide and graphene heterostructure for high-performance asymmetric supercapacitor. J Alloys Compd 740:1051–1059

    Article  CAS  Google Scholar 

  39. Xu K, Li W, Liu Q, Li B, Liu X, An L, Chen Z, Zou R, Hu J (2014) Hierarchical mesoporous NiCo2O4@MnO2 core–shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors. J Mater Chem A 2:4795–4802

    Article  CAS  Google Scholar 

  40. Yuan C, Li J, Hou L, Zhang X, Shen L, Lou XW (2012) Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv Funct Mater 22:4592–4597

    Article  CAS  Google Scholar 

  41. Chen H, Hu L, Chen M, Yan Y, Wu L (2014) Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater 24:934–942

    Article  Google Scholar 

  42. Ma Z, Shao G, Fan Y, Wang G, Song J, Shen D (2016) Construction of hierarchical α-MnO2 nanowires@ ultrathin δ-MnO2 nanosheets core-shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes. ACS Appl Mater Interfaces 8:9050–9058

    Article  CAS  Google Scholar 

  43. Zhang X, Yu P, Zhang H, Zhang D, Sun X, Ma Y (2013) Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim Acta 89:523–529

    Article  CAS  Google Scholar 

  44. Deng F, Tie J, Lan B, Sun M, Peng S, Deng S, Li B, Sun W, Yu L (2015) NiCo 2O4/MnO2 heterostructured nanosheet: influence of preparation conditions on its electrochemical properties. Electrochim Acta 176:359–368

    Article  CAS  Google Scholar 

  45. Wang HY, Xiao FX, Yu L, Liu B, Lou XW (2014) Hierarchical α-MnO2 nanowires@Ni1-xMnxOy nanoflakes core–shell nanostructures for supercapacitors. Small 10:3181–3186

    Article  CAS  Google Scholar 

  46. Zhang G, Lou XW (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25:976–979

    Article  CAS  Google Scholar 

  47. Grote F, Kühnel RS, Balducci A, Lei Y (2014) Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors. Appl Phys Letters 104:053904

    Article  Google Scholar 

  48. Kang J, Hirata A, Kang L, Zhang X, Hou Y, Chen L, Li C, Fujita T, Akagi K, Chen M (2013) Enhanced supercapacitor performance of MnO2 by atomic doping. Angew Chem 52:1664–1667

    Article  CAS  Google Scholar 

  49. Ai Y, Geng X, Lou Z, Wang ZM, Shen G (2015) Rational synthesis of branched CoMoO4@CoNiO2 core/shell nanowire arrays for all-solid-state supercapacitors with improved performance. ACS Appl Mater Interfaces 7:24204–24211

    Article  CAS  Google Scholar 

  50. Zhao Y, Hu L, Zhao S, Wu L (2016) Preparation of MnCo2O4@Ni(OH)2 core–shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv Funct Mater 26:4085–4093

    Article  CAS  Google Scholar 

  51. Li Y, Zhang Y, Li Y, Wang Z, Fu H, Zhang X, Chen Y, Zhang H, Li X (2014) Unveiling the dynamic capacitive storage mechanism of Co3O4@NiCo2O4 hybrid nanoelectrodes for supercapacitor applications. Electrochim Acta 145:177–184

    Article  CAS  Google Scholar 

  52. Liu X, Shi S, Xiong Q, Li L, Zhang Y, Tang H, Gu C, Wang X, Tu J (2013) Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials. ACS Appl Mater Interfaces 5:8790–8795

    Article  CAS  Google Scholar 

  53. Yu D, Wu B, Ran J, Ge L, Wu L, Wang H, Xu T (2016) An ordered ZIF-8-derived layered double hydroxide hollow nanoparticles-nanoflake array for high efficiency energy storage. J Mater Chem A 4:16953–16960

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful for the financial support from the Natural Science Foundation of China (51674221, 51704261) and the Natural Science Foundation of Hebei Province (B2018203330, B2018203360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujuan Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., Hou, L., Di, S. et al. Plumage-like MnO2@NiCo2O4 core–shell architectures for high-efficiency energy storage: the synergistic effect of ultralong MnO2 “scaffold” and ultrathin NiCo2O4 “fluff”. Ionics 24, 3227–3235 (2018). https://doi.org/10.1007/s11581-018-2511-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2511-9

Keywords

Navigation