Skip to main content

Advertisement

Log in

Continuous carbon fiber polymer–matrix composites in unprecedented antiferroelectric coupling providing exceptionally high through-thickness electric permittivity

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Continuous carbon fiber polymer–matrix composites in unprecedented antiferroelectric coupling, as enabled by stacking composites with positive value (up to 400) and negative value (down to −600) of the electric permittivity, provide exceptionally high through-thickness permittivity up to 78,000 (≤2.0 MHz), corresponding to a capacitance of 370 μF/m2. The high capacitance is consistent with the equation for negative and positive capacitors in series. The permittivity tailoring of the composites involves dielectric cellulosic tissue paper interlaminar interlayers. Negative permittivity (not previously reported for carbon fiber composites) requires the paper to be wet with tap water (resistivity 1.5 kΩ cm) during incorporation in the composite, though the water evaporates and leaves ions at very low concentrations during composite fabrication, and also requires optimum through-thickness resistivity (e.g., 1 kΩ cm, as given by paper thickness 35 μm); it is probably due to interactions between the functional groups on the carbon fiber surface and the residual ions (mainly chloride) left after tap water evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Notes

  1. http://www.fibermaxcomposites.com/shop/datasheets/TR50S_15K_03_2010.pdf, as viewed on May 25, 2015.

  2. http://en.wikipedia.org/wiki/Japanese_tissue, as viewed on May 22, 2015; http://japanese-paper.hidakawashi.com/paper-TENGU/index.html, as viewed on May 22, 2015; https://hiromipaper.wordpress.com/category/about-washi/, as viewed on May 22, 2015.

  3. https://www.ecwa.org/wqreport.pdf, as viewed on May 22, 2015.

  4. https://www.hexion.com/Products/TechnicalDataSheet.aspx?id=2759, as viewed on May 22, 2015.

  5. http://www.miller-stephenson.com/assets/1/Store%20Item/curing%20agents.pdf, as viewed on May 22, 2015.

  6. http://www.tencate.com/emea/Images/TC275-1_DS_101113_Web28-24442.pdf, as viewed on May 22, 2015.

References

  1. Zhu J, Luo Z, Wu S, Haldolaarachchige N, Young DP, Wei S, Guo Z (2012) Magnetic graphene nanocomposites: electron conduction, giant magnetoresistance and tunable negative permittivity. J Mater Chem 22(3):835–844

    Article  Google Scholar 

  2. Gu H, Guo J, He Q, Jiang Y, Huang Y, Haldolaarachige N, Luo Z, Young DP, Wei S, Guo Z (2014) Magnetoresistive polyaniline/multi-walled carbon nanotube nanocomposites with negative permittivity. Nanoscale 6(1):181–189

    Article  Google Scholar 

  3. Kavas H, Guenay M, Baykal A, Toprak MS, Sozeri H, Aktas B (2013) Negative permittivity of polyaniline-Fe3O4 nanocomposite. J Inorg Organomet Polymers Mater 23(2):306–314

    Article  Google Scholar 

  4. Shi Z, Chen S, Sun K, Wang X, Fan R, Wang X (2014) Tunable radio-frequency negative permittivity in nickel-alumina “natural” meta-composites. Appl Phys Lett 104(25):252908/1–252908/5

    Article  Google Scholar 

  5. Yan K, Fan R, Shi Z, Chen M, Qian L, Wei Y, Sun K, Li J (2014) Negative permittivity behavior and magnetic performance of perovskite La1-xSrxMnO3 at high-frequency. J Mater Chem C 2:1028–1033

    Article  Google Scholar 

  6. Tsutaoka T, Fukuyama K, Kinoshita H, Kasagi T, Yamamoto S, Hatakeyama K (2013) Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range. Appl Phys Lett 103(26):261906/1–261906/5

    Article  Google Scholar 

  7. Wang D, Chung DDL (2013) Through-thickness piezoresistivity in a carbon fiber polymer-matrix structural composite for electrical-resistance-based through-thickness strain sensing. Carbon 60(1):129–138

    Article  Google Scholar 

  8. Chung DDL (2007) Damage detection using self-sensing concepts. J Aerospace Eng (Proceedings of the Institution of Mechanical Engineers, Part G) 221(G4):509–520

    Article  Google Scholar 

  9. Han S, Chung DDL (2013) Through-thickness thermoelectric power of a carbon fiber/epoxy composite and decoupled contributions from a lamina and an interlaminar interface. Carbon 52:30–39

    Article  Google Scholar 

  10. Han S, Chung DDL (2013) Carbon fiber polymer-matrix structural composites exhibiting greatly enhanced through-thickness thermoelectric figure of merit. Compos A 48:162–170

    Article  Google Scholar 

  11. Luo X, Chung DDL (2001) Carbon fiber polymer-matrix composites as capacitors. Compos Sci Tech 61:885–888

    Article  Google Scholar 

  12. Tony T, Asp LE (2013) Structural carbon fibre composite/PET capacitors—effects of dielectric separator thickness. Compos B 49:16–21

    Article  Google Scholar 

  13. Carlson T, Ordeus D, Wysocki M, Asp LE (2010) Structural capacitor materials made from carbon fibre epoxy composites. Compos Sci Technol 70(7):1135–1140

    Article  Google Scholar 

  14. Jiang Q, Yang R, Fu GG, Xie DY, Huang B, He ZW, Zhao Y (2011) Preparation of the carbon nanotube/carbon fiber composite and application as the electrode material of the electrochemical super capacitor. Mater Sci Forum 687:158–162

    Article  Google Scholar 

  15. Salinas-Torres D, Sieben JM, Lozano-Castello D, Cazorla-Amoros D, Morallon E (2013) Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre-PANI electrodes. Electrochim Acta 89:326–333

    Article  Google Scholar 

  16. Jin Z, Tian Y, Su LJ, Qin CL, Zhao DY, Li RQ, Zhao J (2013) Hybrid supercapacitors based on polyaniline/activated carbon fiber composite electrode materials. In: Advanced Materials Research (Durnten-Zurich, Switzerland) vol. 800, pp. 505–508

  17. Asp LE (2013) Multifunctional composite materials for energy storage in structural load paths. Plast, Rubber Compos 42:144–149

    Google Scholar 

  18. Leijonmarck S, Carlson T, Lindbergh G, Asp LE, Maples H, Bismarck A (2013) Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries. Compos Sci Technol 89:149–157

    Article  Google Scholar 

  19. Jacques E, Kjell MH, Zenkert D, Lindbergh G, Behm M, Willgert M (2012) Impact of electrochemical cycling on the tensile properties of carbon fibres for structural lithium-ion composite batteries. Compos Sci Technol 72:792–798

    Article  Google Scholar 

  20. Pereira T, Guo Z, Nieh S, Arias J, Hahn HT (2009) Energy storage structural composites: a review. J Compos Mater 43:549–560

    Article  Google Scholar 

  21. Han S, Chung DDL (2011) Increasing the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation. Compos Sci Technol 71:1944–1952

    Article  Google Scholar 

  22. Chung DDL (2004) Self-heating structural materials. Smart Mater Struct 13(3):562–565

    Article  Google Scholar 

  23. Han S, Chung DDL (2012) Mechanical energy dissipation using carbon fiber polymer-matrix structural composites with filler incorporation. J Mater Sci 47:2434–2453. doi:10.1007/s10853-011-6066-7

    Article  Google Scholar 

  24. Luo X, Chung DDL (1999) Electromagnetic interference shielding using continuous carbon fiber carbon-matrix and polymer-matrix composites. Compos B 30:227–231

    Article  Google Scholar 

  25. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285

    Article  Google Scholar 

  26. Wu J, Chung DDL (2002) Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer-matrix composite by using activated carbon fibers. Carbon 40(ER3):445–447

    Article  Google Scholar 

  27. Chung DDL (2012) Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50:3342–3353

    Article  Google Scholar 

  28. Wang R, Yang H, Wang J, Ma Z, Li F (2014) Preparation and characterization of conductive filler used for electromagnetic shielding materials. Appl Mech Mater 492:268–272

    Article  Google Scholar 

  29. Liu L, He P, Zhou K, Chen T (2014) Microwave absorption properties of carbon fibers with carbon coils of different morphologies (double microcoils and single nanocoils) grown on them. J Mater Sci 49(12):4379–4386. doi:10.1007/s10853-014-8137-z

    Article  Google Scholar 

  30. Yuan Q, Su C, Huang J, Gan W, Huang Y (2013) Process and analysis of electromagnetic shielding in composite fiberboard laminated with electroless nickel-plated carbon fiber. BioResources 8:4633–4646

    Google Scholar 

  31. Singh BP, Choudhary Saini VP, Mathur RB (2012) Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding. AIP Adv 2:022151

    Article  Google Scholar 

  32. Singh AP, Garg P, Alam F, Singh K, Mathur RB, Tandon RP, Chandra A, Dhawan SK (2012) Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon 50:3868–3875

    Article  Google Scholar 

  33. Wang R, He F, Wan Y, Qi Y (2012) Preparation and characterization of a kind of magnetic carbon fibers used as electromagnetic shielding materials. J Alloys Compd 514:35–39

    Article  Google Scholar 

  34. Mall S, Rodriguez J, Alexander MD (2011) Electromagnetic interference and electrical conductivity behavior of carbon/polycyanate composite with nickel nanostrands™ under fatigue. Polym Compos 32:483–490

    Article  Google Scholar 

  35. Hua Y, Yamanaka A, Ni Q (2010) Electromagnetic shielding properties of super fiber-reinforced composites. Adv Mater Res (Zurich, Switzerland) 123–125:65–68

    Article  Google Scholar 

  36. Micheli D, Laurenzi S, Mariani PV, Moglie F, Gradoni G, Marchetti M (2012) Electromagnetic Shielding of Oriented Carbon Fiber Composite Materials. European Space Agency [Special Publication] SP-702:a3/1

  37. Belov DA, Shlyakhtina AV, Stefanovich SY, Shchegolikhin AN, Knotko AV, Karyagina OK, Shcherbakova LG (2011) Antiferroelectric phase transition in pyrochlore-like (Dy1-xCax)2Ti2O7-δ (x = 0, 0.1) high temperature conductors. Solid State Ionics 192(1):188–194

    Article  Google Scholar 

  38. Korotkov L, Likhovaya D, Levitskii R, Sorokov S, Vdovych A (2013) Dielectric, elastic and electromechanical properties of K1-x(NH4)xH2PO4 solid solutions in paraelectric phase. Ferroelectrics 444(1):76–83

    Article  Google Scholar 

  39. Yasuda N, Kawai J (1990) Dielectric dispersion associated with the d.c.-electric-field-enforced ferroelectric phase transition in the pressure-induced antiferroelectric cesium dihydrogen phosphate. Phys Rev B: Condens Matter 42(7-B):4893–4896

    Article  Google Scholar 

  40. Tang H, Feng YJ, Xu Z, Zhang CH, Gao JQ (2009) Effect of Nb doping on microstructure and electric properties of lead zirconate stannum titanate antiferroelectric ceramics. J Mater Res 24(5):1642–1645

    Article  Google Scholar 

  41. Zhang Q, Chen S, Fan M, Jiang S, Yang T, Wang J, Li G, Yao X (2012) High pyroelectric response of lead zirconate stannate titanate based antiferroelectric ceramics with low Curie temperature. Mater Res Bull 47(12):4503–4509

    Article  Google Scholar 

  42. Zhuo F, Li Q, Li Y, Gao J, Yan Q, Zhang Y, Chu X, Cao W (2014) Effect of A-site La3+ modified on dielectric and energy storage properties in lead zirconate stannate titanate ceramics. Mater Res Express 1(4):045501/045501–045501/045511

    Article  Google Scholar 

  43. Grimberg R (2013) Electromagnetic metamaterials. Mater Sci Eng B 178(19):1285–1295

    Article  Google Scholar 

  44. Chawla KK (2005) Fibrous materials. Cambridge University Press, Cambridge, p 55

    Google Scholar 

  45. Wang A, Chung DDL (2014) Dielectric and electrical conduction behavior of carbon paste electrochemical electrodes, with decoupling of carbon, electrolyte and interface contributions. Carbon 72:135–151

    Article  Google Scholar 

  46. Hong X, Chung DDL (2015) Exfoliated graphite with relative dielectric constant reaching 360, obtained by exfoliation of acid-intercalated graphite flakes without subsequent removal of the residual acidity. Carbon 91:1–10

    Article  Google Scholar 

  47. Moalleminejad M, Chung DDL (2015) Dielectric constant and electrical conductivity of carbon black as an electrically conductive additive in a manganese-dioxide electrochemical electrode, and their dependence on electrolyte permeation. Carbon 91:76–87

    Article  Google Scholar 

  48. Dhakate SR, Bahl OP (2003) Effect of carbon fiber surface functional groups on the mechanical properties of carbon–carbon composites with HTT. Carbon 41:1193–1203

    Article  Google Scholar 

  49. Fukai K, Hidaka K, Aoki M, Abe K (1990) Preparation and properties of uniform fine perovskite powders by hydrothermal synthesis. Ceram Int 16:285–290

    Article  Google Scholar 

  50. Wang S, Chung DDL (2005) The interlaminar interface of a carbon fiber epoxy-matrix composite as an impact sensor. J Mater Sci 40:1863–1867. doi:10.1007/s10853-005-1205-7

    Article  Google Scholar 

  51. Wang S, Kowalik DP, Chung DDL (2004) Self-sensing attained in carbon fiber polymer-matrix structural composites by using the interlaminar interface as a sensor. Smart Mater Struct 13:570–592

    Article  Google Scholar 

  52. Leong C, Aoyagi Y, Chung DDL (2005) Carbon-black thixotropic thermal pastes for improving thermal contacts. J Electron Mater 34(10):1336–1341

    Article  Google Scholar 

  53. Lee SY, Yoo D, Lee J, Jo W, Hong Y, Kim Y, Yoo S (2012) Fabrication and characterization of colossal dielectric response of polycrystalline Ca1-x Sr x Cu3Ti4O12 (0 ≤ x ≤ 1) ceramics. MRS Online Proceedings Library, Vol. 1454, Nanocomposites, Nanostructures and Heterostructures of Correlated Oxide Systems

  54. Puli VS, Pradhan DK, Chrisey DB, Tomozawa M, Sharma GL, Scott JF, Katiyar RS (2013) Structure, dielectric, ferroelectric, and energy density properties of (1 − x)BZT–xBCT ceramic capacitors for energy storage applications. J Mater Sci 48:2151–2157. doi:10.1007/s10853-012-6990-1

    Article  Google Scholar 

  55. Dang Z, Zhang Y, Tjong S (2004) Dependence of dielectric behavior on the physical property of fillers in the polymer-matrix composites. Synth Met 146(1):79–84

    Article  Google Scholar 

  56. Khan AI, Chatterjee K, Wang B, Drapcho S, You L, Serrao C, Bakaul SR, Ramesh R, Salahuddin S (2015) Negative capacitance in a ferroelectric capacitor. Nat Mater 14:182–186

    Article  Google Scholar 

  57. Catalan G, Jimenez D, Gruverman A (2015) Ferroelectrics negative capacitance detected. Nat Mater 14(2):137–139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. L. Chung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takizawa, Y., Chung, D.D.L. Continuous carbon fiber polymer–matrix composites in unprecedented antiferroelectric coupling providing exceptionally high through-thickness electric permittivity. J Mater Sci 51, 6913–6932 (2016). https://doi.org/10.1007/s10853-016-9979-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9979-3

Keywords

Navigation