Skip to main content
Log in

Negative Permittivity of Polyaniline–Fe3O4 Nanocomposite

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Polyaniline–Fe3O4 nanocomposite with and without ionic liquid were successfully synthesized via in situ polymerization using cetyl trimethylammonium bromide (CTAB) as surfactant. Both TG analysis and FT-IR measurements proved the presence of organic layer on the surface of Fe3O4 nanoparticles. The influence of 1-butyl-3-methyl-imidazolium bromide (BMIMBr) as ionic liquid on the structure, conductivity, and magnetic property of PANI–Fe3O4–CTAB nanocomposite were studied in detail. The results show that imidazolium-based ionic liquids BMIMBr acts as an anchor agent during the formation of PANI–Fe3O4–CTAB nanocomposite. Ionic liquid significantly deteriorated nanocomposite’s magnetic properties, and contributed to non-saturated M–H curve due to the disappearance of antiferromagnetic interactions. It has also an improving effect on AC and DC conductivities. The most important effect of IL is observed in real part of permittivity of PANI–Fe3O4–CTAB that it has negative high values at low frequency low temperature region. Due to the negative dielectric constant, material exhibits uncommon properties in electromagnetic waves scattering and attraction between similar charges. This possibility provokes research on these composites as high T superconductors, negative index materials and microwave absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.-M. Mangold, J. Schuster, C. Weidlich, Electrochim. Acta 56, 3616 (2011)

    Article  CAS  Google Scholar 

  2. M.O. Ansari, F. Mohammad, Sens. Actuators B 157, 122 (2011)

    Article  CAS  Google Scholar 

  3. X. Ma, X. Zhang, Y. Li, G. Li, M. Wang, H. Chen, Y. Mi, Macromol. Mater. Eng. 291, 75–82 (2006)

    Article  CAS  Google Scholar 

  4. Y. Xie, X. Honga, Y. Gao, M. Li, J. Liua, J. Wanga, J. Lua, Synth. Met. 162, 677–681 (2012)

    Article  CAS  Google Scholar 

  5. C. Leng, J. Wei, Z. Liu, J. Shi, J. Alloys Compd. 509, 3052 (2011)

    Article  CAS  Google Scholar 

  6. H. Guo, H. Zhu, H. Lin, J. Zhang, Mater. Lett. 62, 2196 (2008)

    Article  Google Scholar 

  7. B. Ünal, Z. Durmus, A. Baykal, H. Sözeri, M.S. Toprak, L. Alpsoy, J. Alloy. Compd. 505, 172 (2010)

    Article  Google Scholar 

  8. H. Erdemi, A. Baykal, E. Karaoglu, M.S. Toprak, Mater. Res. Bull. 47, 2193 (2012)

    Article  CAS  Google Scholar 

  9. Z. Durmus, H. Erdemi, A. Aslan, M.S. Toprak, H. Sozeri, A. Baykal, Polyhedron 30, 419 (2011)

    Article  CAS  Google Scholar 

  10. S.S. Umarea, B.H. Shambharkara, R.S. Ningthoujam, Synth. Met. 160, 1815 (2010)

    Article  Google Scholar 

  11. J. Jianga, L.H. Ai, D.B. Qina, H. Liu, L.C. Li, Synth. Met. 159, 695 (2009)

    Article  Google Scholar 

  12. T. Wejrzanowski, R. Pielaszek, A. Opalińska, H. Matysiak, W. Lojkowski, K.J. Kurzydlowski, Appl. Surf. Sci. 253, 204 (2006)

    Article  CAS  Google Scholar 

  13. R. Pielaszek, Appl. Crystallography Proceedings of the XIX Conference, Krakow, Poland, p 43 (2003)

  14. T. Özkaya, M.S. Toprak, A. Baykal, H. Kavas, Y. Köseoğlu, B. Aktaş, J. Alloy. Compd. 472, 18 (2009)

    Article  Google Scholar 

  15. B. Unal, M.S. Toprak, Z. Durmus, H. Sözeri, A. Baykal, J. Nanopart. Res. 12, 3057 (2010)

    Article  Google Scholar 

  16. Z. Durmus, H. Kavas, A. Baykal, H. Sozeri, L. Alpsoy, S.Ü. Çelik, M.S. Toprak, J. Alloy. Compd. 509, 2555 (2011)

    Article  CAS  Google Scholar 

  17. M. Aydın, Z. Durmus, H. Kavas, B. Esat, H. Sozeri, A. Baykal, F. Yılmaz, M.S. Toprak, Polyhedron 30, 1120 (2011)

    Article  Google Scholar 

  18. S. Quillard, G. Louarn, S. Lefrant, A.G. MacDiarmid, Phys. Rev. B 50, 12496 (1994)

    Google Scholar 

  19. Z. Durmus, A. Baykal, H. Kavas, H. Sözeri, Physica B 406, 1114 (2011)

    Article  CAS  Google Scholar 

  20. H. Guo, H. Zhu, H. Lin, J. Zhang, Mat. Lett. 62, 2196 (2008)

    Article  Google Scholar 

  21. L. Kong, X. Lu, E. Jin, S. Jiang, X. Bian, W. Zhang, C. Wang, J. Solid State Chem. 182, 2081 (2009)

    Article  CAS  Google Scholar 

  22. X.F. Lu, Y.H. Yu, L. Chen, H. Mao, W.J. Zhang, Y. Wei, Chem. Commun. 13, 1522 (2004)

    Article  Google Scholar 

  23. Z.J. Wang, J.H. Yuan, M.Y. Li, D.X. Han, Y.J. Zhang, Y.F. Shen, L. Niu, A. Ivaska, J. Electroanal. Chem. 599, 121 (2007)

    Article  CAS  Google Scholar 

  24. E.E. Tanrıverdi, A.T. Uzumcu, H. Kavas, A. Demir, A. Baykal, Nano-Micro Lett. 3, 99 (2011)

    Google Scholar 

  25. X. Lu, H. Mao, D. Chao, W. Zhang, Y. Wei, J. Solid State Chem. 179, 2609 (2006)

    Article  CAS  Google Scholar 

  26. A. Baykal, M. Günay, M.S. Toprak, H. Sozeri, Effect of ionic liquids on the electrical and magnetic performance of polyaniline-nickel ferrite nanocomposite, Mater. Res. Bull. (2012) (in press)

  27. W.J. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park, Nature 411, 665 (2001)

    Article  CAS  Google Scholar 

  28. R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner, Phys. Rev. Lett. 77, 394 (1996)

    Article  CAS  Google Scholar 

  29. J.A. Lopez, F. González, F.A. Bonilla, G. Zambrano, M.E. Gómez, Revista Latinoamericana de Metalurgia Materiales 30, 60 (2010)

    Google Scholar 

  30. Z. Durmus, H. Kavas, M.S. Toprak, A. Baykal, T.G. Altınçekiç, A. Aslan, A. Bozkurt, S. Coşgun, J. Alloy. Compd. 484, 371 (2009)

    Article  CAS  Google Scholar 

  31. H. Kavas, Z. Durmus, A. Baykal, A. Aslan, A. Bozkurt, M.S. Toprak, J. Non-Cryst. Solids 356, 484 (2010)

    Article  CAS  Google Scholar 

  32. B. Unal, Z. Durmus, H. Kavas, A. Baykal, M.S. Toprak, Mater. Chem. Phys. 123, 184 (2010)

    Article  CAS  Google Scholar 

  33. E. Temizel, E. Ayan, M. Senel, H. Erdemi, M.S. Yavuz, H. Kavas, A. Baykal, R. Öztürk, Mater. Chem. Phys. 131, 284 (2011)

    Article  CAS  Google Scholar 

  34. C.H. Hsieh, A.H. Lee, C.D. Liu, J.L. Han, K.H. Hsieh, S.N. Lee, AIP Adv. 2, 012127 (2012)

    Article  Google Scholar 

  35. J. Joo, E.J. Oh, G. Min, A.G. MacDiarmid, A.J. Epstein, Synth. Met. 69, 251 (1995)

    Article  CAS  Google Scholar 

  36. Y.Z. Wang, J. Joo, C.-H. Hsu, A.J. Epstein, Synth. Met. 69, 267 (1995)

    Article  CAS  Google Scholar 

  37. V.N. Prigodin, A.J. Epstein, Synth. Met. 125, 43 (2002)

    Article  CAS  Google Scholar 

  38. C.W. Chu, F. Chen, J. Shulman, S. Tsui, Y.Y. Xue, W. Wen, P. Sheng, in SPIE Proceeding, vol. 5932, ed. by I. Bozovic, D. Pavuna (Optics & Photonics, San Diego, 2005), p. 31

    Google Scholar 

  39. C.W. Chu, F. Chen, Y.Y. Xue, J. Shulman, S. Tsui, U.S. Patent 7,611,969 B2, 03 Nov 2009

  40. H. Liu, X. Zhao, Chemical route fabricated magnetic structure exhibiting a negative permeability at infrared frequencies. MRS Proc. 919, (2006). doi:10.1557/PROC-0919-J02-08

Download references

Acknowledgments

The authors are thankful to the Fatih University, Research Project Foundation (Contract No: P50020902-2) and TUBITAK (Contract No: 110T487) for financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Kavas or A. Baykal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavas, H., Günay, M., Baykal, A. et al. Negative Permittivity of Polyaniline–Fe3O4 Nanocomposite. J Inorg Organomet Polym 23, 306–314 (2013). https://doi.org/10.1007/s10904-012-9776-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-012-9776-7

Keywords

Navigation