Skip to main content
Log in

Graphene-based flame retardants: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene and its derivatives are potential flame retardant materials with good flame retardant performance; in particular, graphene as an adjuvant in combination with inorganic nanomaterials may be a promising candidate of flame retardant. This review describes the flame retardant mechanism, the development trend, and the classification of graphene-based flame retardants. It points out that graphene has attracted intensive interests in the fields of electronics, energy, and information, due to its excellent properties such as high thermal conductivity, good electron transport ability, and large specific surface area. In the meantime, graphene can change the pyrolysis as well as the thermal conductivity, heat absorption, viscosity and dripping of polymer during the combustion process. In other words, graphene can improve the thermal stability of polymer and delay its ignition, and it can also inhibit fire from spreading and reduce heat release rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A 43:1419. doi:10.1016/j.compositesa.2011.11.019

    Article  Google Scholar 

  2. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta J-M, Dubois P (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R Reports 63:100. doi:10.1016/j.mser.2008.09.002

    Article  Google Scholar 

  3. Bar M, Alagirusamy R, Das A (2015) Flame Retardant Polymer Composites. Fibers Polym 16:705. doi:10.1007/s12221-015-0705-6

    Article  Google Scholar 

  4. Lu S, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661. doi:10.1016/s0079-6700(02)00018-7

    Article  Google Scholar 

  5. Irvine DJ, McCluskey JA, Robinson IM (2000) Fire hazards and some common polymers. Polym Degrad Stab 67:383. doi:10.1016/s0141-3910(99)00127-5

    Article  Google Scholar 

  6. Hirschler MM (2015) Flame retardants and heat release: review of data on individual polymers. Fire Mater 39:232. doi:10.1002/fam.2242

    Article  Google Scholar 

  7. Bourbigot S, Duquesne S (2007) Fire retardant polymers: recent developments and opportunities. J Mater Chem 17:2283. doi:10.1039/b702511d

    Article  Google Scholar 

  8. Levchik SV, Weil ED (2000) Combustion and fire retardancy of aliphatic nylons. Polym Int 49:1033. doi:10.1002/1097-0126(200010)49:10<1033:aid-pi518>3.0.co;2-i

    Article  Google Scholar 

  9. Salas EC, Sun Z, Luttge A, Tour JM (2010) Reduction of graphene oxide via bacterial respiration. ACS Nano 4:4852. doi:10.1021/nn101081t

    Article  Google Scholar 

  10. Nine MJ, Cole MA, Tran DNH, Losic D (2015) Graphene: a multipurpose material for protective coatings. J Mater Chem A 3:12580. doi:10.1039/c5ta01010a

    Article  Google Scholar 

  11. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902. doi:10.1021/nl0731872

    Article  Google Scholar 

  12. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385. doi:10.1126/science.1157996

    Article  Google Scholar 

  13. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498. doi:10.1021/nl802558y

    Article  Google Scholar 

  14. Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351. doi:10.1016/j.ssc.2008.02.024

    Article  Google Scholar 

  15. Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308. doi:10.1126/science.1156965

    Article  Google Scholar 

  16. Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706. doi:10.1038/nature07719

    Article  Google Scholar 

  17. Kamalanathan M, Karuppusamy S, Sivakumar R, Gopalakrishnan R (2015) Synthesis of reduced graphene oxide-copper tin sulphide composites and their photoconductivity enhancement for photovoltaic applications. J Mater Sci 50:8029. doi:10.1007/s10853-015-9370-9

    Article  Google Scholar 

  18. Sanchez VC, Jachak A, Hurt RH, Kane AB (2011) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25:15. doi:10.1021/tx200339h

    Article  Google Scholar 

  19. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686. doi:10.1039/c2cc00110a

    Article  Google Scholar 

  20. Huang G, Gao J, Wang X, Liang H, Ge C (2012) How can graphene reduce the flammability of polymer nanocomposites? Mater Lett 66:187. doi:10.1016/j.matlet.2011.08.063

    Article  Google Scholar 

  21. Higginbotham AL, Lomeda JR, Morgan AB, Tour JM (2009) Graphite oxide flame-retardant polymer nanocomposites. ACS appl mater interfaces 1:2256. doi:10.1021/am900419m

    Article  Google Scholar 

  22. Zhang R, Hu Y, Xu J, Fan W, Chen Z, Wang Q (2004) Preparation and combustion properties of flame retardant styrene-butyl acrylate copolymer/graphite oxide nanocomposites. Macromol Mater Eng 289:355. doi:10.1002/mame.200300264

    Article  Google Scholar 

  23. Shi Y, Li L-J (2011) Chemically modified graphene: flame retardant or fuel for combustion? J Mater Chem 21:3277. doi:10.1039/c0jm02953j

    Article  Google Scholar 

  24. Liu S, Yan H, Fang Z, Wang H (2014) Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin. Composites Sci and Technol 90:40. doi:10.1016/j.compscitech.2013.10.012

    Article  Google Scholar 

  25. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5. doi:10.1016/j.polymer.2010.11.042

    Article  Google Scholar 

  26. Heidar Pour R, Soheilmoghaddam M, Hassan A, Bourbigot S (2015) Flammability and thermal properties of polycarbonate/acrylonitrile-butadiene-styrene nanocomposites reinforced with multilayer graphene. Polym Degrad Stab 120:88. doi:10.1016/j.polymdegradstab.2015.06.013

    Article  Google Scholar 

  27. Hu J, Zhang F (2014) Self-assembled fabrication and flame-retardant properties of reduced graphene oxide/waterborne polyurethane nanocomposites. J Therm Anal Calorim 118:1561. doi:10.1007/s10973-014-4078-7

    Article  Google Scholar 

  28. Han Y, Wu Y, Shen M, Huang X, Zhu J, Zhang X (2013) Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J Mater Sci 48:4214. doi:10.1007/s10853-013-7234-8

    Article  Google Scholar 

  29. Liang J, Huang Y, Zhang L et al (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297. doi:10.1002/adfm.200801776

    Article  Google Scholar 

  30. Dittrich B, Wartig K-A, Hofmann D, Muelhaupt R, Schartel B (2015) The influence of layered, spherical, and tubular carbon nanomaterials’ concentration on the flame retardancy of polypropylene. Polym Compos 36:1230. doi:10.1002/pc.23027

    Article  Google Scholar 

  31. Li Y, Pan D, Chen S, Wang Q, Pan G, Wang T (2013) In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater Des 47:850. doi:10.1016/j.matdes.2012.12.077

    Article  Google Scholar 

  32. Wang X, Hu Y, Song L, Yang H, Xing W, Lu H (2011) In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J Mater Chem 21:4222. doi:10.1039/c0jm03710a

    Article  Google Scholar 

  33. Wang X, Song L, Yang H, Xing W, Lu H, Hu Y (2012) Cobalt oxide/graphene composite for highly efficient CO oxidation and its application in reducing the fire hazards of aliphatic polyesters. J Mater Chem 22:3426. doi:10.1039/c2jm15637g

    Article  Google Scholar 

  34. Yi C, Wang W, Shen C (2014) The adsorption properties of CO molecules on single-layer graphene nanoribbons. AIP Advances 4:031330. doi:10.1063/1.4868521

    Article  Google Scholar 

  35. Bao C, Song L, Xing W et al (2012) Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. J Mater Chem 22:6088. doi:10.1039/c2jm16203b

    Article  Google Scholar 

  36. Chouhan DK, Rath SK, Kumar A et al (2015) Structure reinforcement correlation and chain dynamics in graphene oxide and Laponite-filled epoxy nanocomposites. J Mater Sci 50:7458. doi:10.1007/s10853-015-9305-5

    Article  Google Scholar 

  37. Silva LCO, Silva GG, Ajayan PM, Soares BG (2015) Long-term behavior of epoxy/graphene-based composites determined by dynamic mechanical analysis. J Mater Sci 50:6407. doi:10.1007/s10853-015-9193-8

    Article  Google Scholar 

  38. Wang D, Zhang Q, Zhou K, Yang W, Hu Y, Gong X (2014) The influence of manganese–cobalt oxide/graphene on reducing fire hazards of poly (butylene terephthalate). J Hazard Mater 278:391. doi:10.1016/j.jhazmat.2014.05.072

    Article  Google Scholar 

  39. Surudžić R, Janković A, Mitrić M et al (2016) The effect of graphene loading on mechanical, thermal and biological properties of poly(vinyl alcohol)/graphene nanocomposites. J Ind Eng Chem 34:250. doi:10.1016/j.jiec.2015.11.016

    Article  Google Scholar 

  40. Wang X, Song L, Pornwannchai W, Hu Y, Kandola B (2013) The effect of graphene presence in flame retarded epoxy resin matrix on the mechanical and flammability properties of glass fiber-reinforced composites. Compos A 53:88. doi:10.1016/j.compositesa.2013.05.017

    Article  Google Scholar 

  41. Kim BK (2012) Graphene and graphene/polymer nanocomposites. Express Polym Lett 6:772. doi:10.3144/expresspolymlett.2012.82

    Article  Google Scholar 

  42. Kim F, Luo J, Cruz-Silva R, Cote LJ, Sohn K, Huang J (2010) Self-propagating domino-like reactions in oxidized graphite. Adv Funct Mater 20:2867. doi:10.1002/adfm.201000736

    Article  Google Scholar 

  43. Hofmann D, Wartig K-A, Thomann R, Dittrich B, Schartel B, Mülhaupt R (2013) Functionalized graphene and carbon materials as additives for melt-extruded flame retardant polypropylene. Macromol Mater Eng 298:1322. doi:10.1002/mame.201200433

    Article  Google Scholar 

  44. Dittrich B, Wartig K-A, Hofmann D, Mülhaupt R, Schartel B (2013) Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites. Polym Adv Technol 24:916. doi:10.1002/pat.3165

    Article  Google Scholar 

  45. Dittrich B, Wartig K-A, Hofmann D, Mülhaupt R, Schartel B (2013) Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab 98:1495. doi:10.1016/j.polymdegradstab.2013.04.009

    Article  Google Scholar 

  46. Gavgani JN, Adelnia H, Gudarzi MM (2014) Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 49:243. doi:10.1007/s10853-013-7698-6

    Article  Google Scholar 

  47. Dittrich B, Wartig K-A, Mülhaupt R, Schartel B (2014) Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers 6:2875. doi:10.3390/polym6112875

    Article  Google Scholar 

  48. Huang G, Wang S, Pa Song CWu, Chen S, Wang X (2014) Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Compos A 59:18. doi:10.1016/j.compositesa.2013.12.010

    Article  Google Scholar 

  49. Wang X, Song L, Yang H, Lu H, Hu Y (2011) Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites. Ind Eng Chem Res 50:5376. doi:10.1021/ie102566y

    Article  Google Scholar 

  50. Huang G, Chen S, Song P, Lu P, Wu C, Liang H (2014) Combination effects of graphene and layered double hydroxides on intumescent flame-retardant poly(methyl methacrylate) nanocomposites. Appl Clay Sci 88–89:78. doi:10.1016/j.clay.2013.11.002

    Article  Google Scholar 

  51. Han Z, Wang Y, Dong W, Wang P (2014) Enhanced fire retardancy of polyethylene/alumina trihydrate composites by graphene nanoplatelets. Mater Lett 128:275. doi:10.1016/j.matlet.2014.04.148

    Article  Google Scholar 

  52. Huang G, Liang H, Wang Y, Wang X, Gao J, Fei Z (2012) Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol). Mater Chem Phys 132:520. doi:10.1016/j.matchemphys.2011.11.064

    Article  Google Scholar 

  53. Gong J, Niu R, Liu J et al (2014) Simultaneously improving the thermal stability, flame retardancy and mechanical properties of polyethylene by the combination of graphene with carbon black. Rsc Advances 4:33776. doi:10.1039/c4ra04623d

    Article  Google Scholar 

  54. Liu S, Yan H, Fang Z, Guo Z, Wang H (2014) Effect of graphene nanosheets and layered double hydroxides on the flame retardancy and thermal degradation of epoxy resin. Rsc Advances 4:18652. doi:10.1039/c4ra01267d

    Article  Google Scholar 

  55. Ran S, Guo Z, Han L, Fang Z (2014) Effect of Friedel-Crafts reaction on the thermal stability and flammability of high-density polyethylene/brominated polystyrene/graphene nanoplatelet composites. Polym Int 63:1835. doi:10.1002/pi.4705

    Article  Google Scholar 

  56. Pan Y, Hong N, Zhan J, Wang B, Song L, Hu Y (2014) Effect of graphene on the fire and mechanical performances of glass fiber-reinforced polyamide 6 composites containing aluminum hypophosphite. Polym-Plast Technol Eng 53:1467. doi:10.1080/03602559.2014.909483

    Article  Google Scholar 

  57. Chee WK, Lim HN, Huang NM, Harrison I (2015) Nanocomposites of graphene/polymers: a review. Rsc Advances 5:68014. doi:10.1039/c5ra07989f

    Article  Google Scholar 

  58. Cao Y, Feng J, Wu P (2012) Polypropylene-grafted graphene oxide sheets as multifunctional compatibilizers for polyolefin-based polymer blends. J Mater Chem 22:14997. doi:10.1039/c2jm31477k

    Article  Google Scholar 

  59. Zhang S-P, Song H-O (2013) Preparation of dispersible graphene oxide as a filler to increase the thermal stability of a flame retarding polymer. New Carbon Mater 28:61. doi:10.1016/j.carbon.2013.01.052

    Article  Google Scholar 

  60. Hu H, Wang X, Wang J et al (2010) Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484:247. doi:10.1016/j.cplett.2009.11.024

    Article  Google Scholar 

  61. Jiang S-D, Bai Z-M, Tang G, Hu Y, Song L (2014) Fabrication and characterization of graphene oxide-reinforced poly(vinyl alcohol)-based hybrid composites by the sol–gel method. Compos Sci and Technol 102:51. doi:10.1016/j.compscitech.2014.06.029

    Article  Google Scholar 

  62. Ding P, Zhang J, Song N, Tang S, Liu Y, Shi L (2015) Growing polystyrene chains from the surface of graphene layers via RAFT polymerization and the influence on their thermal properties. Compos A 69:186. doi:10.1016/j.compositesa.2014.11.020

    Article  Google Scholar 

  63. Song N, Yang J, Ding P, Tang S, Shi L (2015) Effect of polymer modifier chain length on thermal conductive property of polyamide 6/graphene nanocomposites. Compos A 73:232. doi:10.1016/j.compositesa.2015.03.018

    Article  Google Scholar 

  64. Wan Y-J, Gong L-X, Tang L-C, Wu L-B, Jiang J-X (2014) Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos A 64:79. doi:10.1016/j.compositesa.2014.04.023

    Article  Google Scholar 

  65. Shen M-Y, Kuan C-F, Kuan H-C et al (2013) Preparation, characterization, thermal, and flame-retardant properties of green silicon-containing epoxy/functionalized graphene nanosheets composites. J Nanomater 2013:1. doi:10.1155/2013/747963

    Google Scholar 

  66. Wang X, Song L, Yang H, Xing W, Kandola B, Hua Y (2012) Simultaneous reduction and surface functionalization of graphene oxide with POSS for reducing fire hazards in epoxy composites. J Mater Chem 22:22037. doi:10.1039/c2jm35479a

    Article  Google Scholar 

  67. Wang J, Xu C, Hu H et al (2011) Synthesis, mechanical, and barrier properties of LDPE/graphene nanocomposites using vinyl triethoxysilane as a coupling agent. J Nanopart Res 13:869. doi:10.1007/s11051-010-0088-y

    Article  Google Scholar 

  68. Hou S, Su S, Kasner ML, Shah P, Patel K, Madarang CJ (2010) Formation of highly stable dispersions of silane-functionalized reduced graphene oxide. Chem Phys Lett 501:68. doi:10.1016/j.cplett.2010.10.051

    Article  Google Scholar 

  69. Kim JS, Hong S, Park DW, Shim SE (2010) Water-borne graphene-derived conductive SBR prepared by latex heterocoagulation. Macromol Res 18:558. doi:10.1007/s13233-010-0603-0

    Article  Google Scholar 

  70. Xu J, Liu J, Li K (2015) Application of functionalized graphene oxide in flame-retardant polypropylene. J Vinyl Add Tech 21:278. doi:10.1002/vnl.21415

    Article  Google Scholar 

  71. Kim M-J, Jean I-Y, Seo J-M, Dai L, Baek J-B (2014) Graphene phosphonic acid as an efficient flame retardant. ACS Nano 8:2820. doi:10.1021/nn4066395

    Article  Google Scholar 

  72. Chen D, Wu F, He M et al (2014) Synthesis and characterization of phosphate intercalated graphite oxide. Fullerenes Nanotubes Carbon Nanostruct 23:6. doi:10.1080/1536383x.2012.758110

    Article  Google Scholar 

  73. Some S, Shackery I, Kim SJ, Jun SC (2015) Phosphorus-doped graphene oxide layer as a highly efficient flame retardant. Chem-A 21:15480. doi:10.1002/chem.201502170

    Google Scholar 

  74. Yuan B, Song L, Liew KM, Hu Y (2015) Solid acid-reduced graphene oxide nanohybrid for enhancing thermal stability, mechanical property and flame retardancy of polypropylene. Rsc Advances 5:41307. doi:10.1039/c5ra04699h

    Article  Google Scholar 

  75. Bao C, Guo Y, Yuan B, Hu Y, Song L (2012) Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies. J Mater Chem 22:23057. doi:10.1039/c2jm35001g

    Article  Google Scholar 

  76. Guo Y, Bao C, Song L, Yuan B, Hu Y (2011) In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on the flame behavior. Ind Eng Chem Res 50:7772. doi:10.1021/ie200152x

    Article  Google Scholar 

  77. Zhang M, Yan H, Yang X, Liu C (2014) Effect of functionalized graphene oxide with a hyperbranched cyclotriphosphazene polymer on mechanical and thermal properties of cyanate ester composites. Rsc Advances 4:45930. doi:10.1039/c4ra06411a

    Article  Google Scholar 

  78. Hu W, Zhan J, Wang X et al (2014) Effect of functionalized graphene oxide with hyper-branched flame retardant on flammability and thermal stability of cross-linked polyethylene. Ind Eng Chem Res 53:3073. doi:10.1021/ie4026743

    Article  Google Scholar 

  79. Qiu S, Hu W, Yu B et al (2015) Effect of functionalized graphene oxide with organophosphorus oligomer on the thermal and mechanical properties and fire safety of polystyrene. Ind Eng Chem Res 54:3309. doi:10.1021/ie504511f

    Article  Google Scholar 

  80. Hu W, Yu B, Jiang S-D, Song L, Hu Y, Wang B (2015) Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene. J Hazard Mater 300:58. doi:10.1016/j.jhazmat.2015.06.040

    Article  Google Scholar 

  81. Wang X, Hu Y, Song L, Xing W, Lu H (2010) Thermal degradation behaviors of epoxy resin/POSS hybrids and phosphorus–silicon synergism of flame retardancy. J Polym Sci B 48:693. doi:10.1002/polb.21939

    Article  Google Scholar 

  82. Wang Z, Wei P, Qian Y, Liu J (2014) The synthesis of a novel graphene-based inorganic–organic hybrid flame retardant and its application in epoxy resin. Compos B 60:341. doi:10.1016/j.compositesb.2013.12.033

    Article  Google Scholar 

  83. Gui H, Xu P, Hu Y et al (2015) Synergistic effect of graphene and an ionic liquid containing phosphonium on the thermal stability and flame retardancy of polylactide. Rsc Advances 5:27814. doi:10.1039/C4RA16393A

    Article  Google Scholar 

  84. Xu JY, Liu J, Li KD, Miao L, Tanemura S (2015) Novel PEPA-functionalized graphene oxide for fire safety enhancement of polypropylene. Sci Technol Adv Mater 16:025006. doi:10.1088/1468-6996/16/2/025006

    Article  Google Scholar 

  85. Liao S-H, Liu P-L, Hsiao M-C et al (2012) One-step reduction and functionalization of graphene oxide with phosphorus-based compound to produce flame-retardant epoxy nanocomposite. Ind Eng Chem Res 51:4573. doi:10.1021/ie2026647

    Article  Google Scholar 

  86. Yuan B, Sheng H, Mu X et al (2015) Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide. J Mater Sci 50:5389. doi:10.1007/s10853-015-9083-0

    Article  Google Scholar 

  87. Liu S, Fang Z, Yan H, Wang H (2016) Superior flame retardancy of epoxy resin by the combined addition of graphene nanosheets and DOPO. Rsc Advances 6:5288. doi:10.1039/c5ra25988f

    Article  Google Scholar 

  88. Huang G, Chen S, Tang S, Gao J (2012) A novel intumescent flame retardant-functionalized graphene: nanocomposite synthesis, characterization, and flammability properties. Mater Chem Phys 135:938. doi:10.1016/j.matchemphys.2012.05.082

    Article  Google Scholar 

  89. Yu B, Wang X, Qian X et al (2014) Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. Rsc Advances 4:31782. doi:10.1039/c3ra45945d

    Article  Google Scholar 

  90. Yuan B, Bao C, Song L, Hong N, Liew KM, Hu Y (2014) Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem Eng J 237:411. doi:10.1016/j.cej.2013.10.030

    Article  Google Scholar 

  91. Wang X, Xing W, Feng X, Yu B, Song L, Hu Y (2014) Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism. Polym Chem 5:1145. doi:10.1039/c3py00963g

    Article  Google Scholar 

  92. Wang X, Hu Y, Song L et al (2012) Comparative study on the synergistic effect of POSS and graphene with melamine phosphate on the flame retardance of poly(butylene succinate). Thermochim Acta 543:156. doi:10.1016/j.tca.2012.05.017

    Article  Google Scholar 

  93. Yu B, Shi Y, Yuan B et al (2015) Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J Mater Chem A 3:8034. doi:10.1039/c4ta06613h

    Article  Google Scholar 

  94. Li K-Y, Kuan C-F, Kuan H-C et al (2014) Preparation and properties of novel epoxy/graphene oxide nanosheets (GON) composites functionalized with flame retardant containing phosphorus and silicon. Mater Chem Phys 146:354. doi:10.1016/j.matchemphys.2014.03.037

    Article  Google Scholar 

  95. Qian X, Song L, Yu B et al (2013) Novel organic–inorganic flame retardants containing exfoliated graphene: preparation and their performance on the flame retardancy of epoxy resins. J Mater Chem A 1:6822. doi:10.1039/c3ta10416h

    Article  Google Scholar 

  96. Schäfer A, Seibold S, Lohstroh W, Walter O, Döring M (2007) Synthesis and properties of flame-retardant epoxy resins based on DOPO and one of its analog DPPO. J Appl Polym Sci 105:685. doi:10.1002/app.26073

    Article  Google Scholar 

  97. Hsiue G-H, Shiao S-J, Wei H-F, Kuo W-J, Sha Y-A (2001) Novel phosphorus-containing dicyclopentadiene-modified phenolic resins for flame-retardancy applications. J Appl Polym Sci 79:342. doi:10.1002/1097-4628(20010110)79:2<342:aid-app180>3.0.co;2-8

    Article  Google Scholar 

  98. Wu K, Zhang Y, Hu W, Lian J, Hu Y (2013) Influence of ammonium polyphosphate microencapsulation on flame retardancy, thermal degradation and crystal structure of polypropylene composite. Compos Sci Technol 81:17. doi:10.1016/j.compscitech.2013.03.018

    Article  Google Scholar 

  99. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902. doi:10.1016/j.progpolymsci.2010.03.001

    Article  Google Scholar 

  100. Yang H, Li F, Shan C et al (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632. doi:10.1039/b901421g

    Article  Google Scholar 

  101. Huang YW, Song SQ, Yang Y, Cao K, Yang JX, Chang GJ (2015) Decomposable double-walled hybrid nanorods: formation mechanism and their effect on flame retardancy of epoxy resin composites. J Mate Chem A 3:15935. doi:10.1039/c5ta02149a

    Article  Google Scholar 

  102. Beyer G (2002) Nanocomposites: a new class of flame retardants for polymers. Plastics Additives and Compounding 4:22. doi:10.1016/s1464-391x(02)80151-9

    Article  Google Scholar 

  103. Norouzi M, Zare Y, Kiany P (2015) Nanoparticles as effective flame retardants for natural and synthetic textile polymers: application, mechanism, and optimization. Polym Rev 55:531. doi:10.1080/15583724.2014.980427

    Article  Google Scholar 

  104. Kashiwagi T, Du FM, Douglas JF, Winey KI, Harris RH, Shields JR (2005) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater 4:928. doi:10.1038/nmat1502

    Article  Google Scholar 

  105. Ray S, Easteal AJ (2007) Advances in Polymer-Filler Composites: macro to Nano. Mater Manuf Processes 22:741. doi:10.1080/10426910701385366

    Article  Google Scholar 

  106. Hong N, Song L, Hull TR et al (2013) Facile preparation of graphene supported Co3O4 and NiO for reducing fire hazards of polyamide 6 composites. Mater Chem Phys 142:531. doi:10.1016/j.matchemphys.2013.07.048

    Article  Google Scholar 

  107. Wang X, Xing W, Feng X et al (2014) The effect of metal oxide decorated graphene hybrids on the improved thermal stability and the reduced smoke toxicity in epoxy resins. Chem Eng J 250:214. doi:10.1016/j.cej.2014.01.106

    Article  Google Scholar 

  108. Jiang S-D, Bai Z-M, Tang G et al (2014) Fabrication of Ce-doped MnO2 decorated graphene sheets for fire safety applications of epoxy composites: flame retardancy, smoke suppression and mechanism. J Mater Chem A 2:17341. doi:10.1039/c4ta02882a

    Article  Google Scholar 

  109. Feng X, Xing W, Song L, Hu Y, Liew KM (2015) TiO2 loaded on graphene nanosheet as reinforcer and its effect on the thermal behaviors of poly(vinyl chloride) composites. Chem Eng J 260:524. doi:10.1016/j.cej.2014.08.103

    Article  Google Scholar 

  110. Attia NF, Abd El-Aal NS, Hassan MA (2016) Facile synthesis of graphene sheets decorated nanoparticles and flammability of their polymer nanocomposites. Polym Degrad Stab 126:65. doi:10.1016/j.polymdegradstab.2016.01.017

    Article  Google Scholar 

  111. Shi Y, Qian X, Zhou K et al (2013) CuO/graphene nanohybrids: preparation and enhancement on thermal stability and smoke suppression of polypropylene. Ind Eng Chem Res 52:13654. doi:10.1021/ie401535h

    Article  Google Scholar 

  112. Ran S, Chen C, Guo Z, Fang Z (2014) Char Barrier Effect of Graphene Nanoplatelets on the Flame Retardancy and Thermal Stability of High-Density Polyethylene Flame-Retarded by Brominated Polystyrene. Journal of Applied Polymer Science 131: n/a. Doi:10.1002/app.40520

  113. Yao K, Gong J, Tian N et al (2015) Flammability properties and electromagnetic interference shielding of PVC/graphene composites containing Fe3O4nanoparticles. Rsc Advances 5:31910. doi:10.1039/c5ra01046b

    Article  Google Scholar 

  114. Zhang X, Alloul O, He Q et al (2013) Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphene nanosheets. Polymer 54:3594. doi:10.1016/j.polymer.2013.04.062

    Article  Google Scholar 

  115. Hong N, Pan Y, Zhan J et al (2013) Fabrication of graphene/Ni-Ce mixed oxide with excellent performance for reducing fire hazard of polypropylene. Rsc Advances 3:16440. doi:10.1039/c3ra42095g

    Article  Google Scholar 

  116. Bao C, Song L, Wilkie CA et al (2012) Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene. J Mater Chem 22:16399. doi:10.1039/c2jm32500d

    Article  Google Scholar 

  117. Zhou K, Wang B, Liu J et al (2014) The influence of α-FeOOH/rGO hybrids on the improved thermal stability and smoke suppression properties in polystyrene. Mater Res Bull 53:272. doi:10.1016/j.materresbull.2014.02.029

    Article  Google Scholar 

  118. Yuan B, Bao C, Qian X et al (2014) Synergetic dispersion effect of graphene nanohybrid on the thermal stability and mechanical properties of ethylene vinyl acetate copolymer nanocomposite. Ind Eng Chem Res 53:1143. doi:10.1021/ie403438k

    Article  Google Scholar 

  119. Hong N, Song L, Wang B et al (2014) Co-precipitation synthesis of reduced graphene oxide/NiAl-layered double hydroxide hybrid and its application in flame retarding poly(methyl methacrylate). Mater Res Bull 49:657. doi:10.1016/j.materresbull.2013.09.051

    Article  Google Scholar 

  120. Wang X, Zhou S, Xing W et al (2013) Self-assembly of Ni-Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J of Mater Chem A 1:4383. doi:10.1039/c3ta00035d

    Article  Google Scholar 

  121. Hong N, Zhan J, Wang X et al (2014) Enhanced mechanical, thermal and flame retardant properties by combining graphene nanosheets and metal hydroxide nanorods for Acrylonitrile–Butadiene–Styrene copolymer composite. Compos A 64:203. doi:10.1016/j.compositesa.2014.04.015

    Article  Google Scholar 

  122. Jiang S, Bai Z, Tang G, Hu Y, Song L (2014) Synthesis of ZnS decorated graphene sheets for reducing fire hazards of epoxy composites. Ind Eng Chem Res 53:6708. doi:10.1021/ie500023w

    Article  Google Scholar 

  123. Pan Y-T, Wang D-Y (2015) One-step hydrothermal synthesis of nano zinc carbonate and its use as a promising substitute for antimony trioxide in flame retardant flexible poly(vinyl chloride). Rsc Advances 5:27837. doi:10.1039/c5ra02987b

    Article  Google Scholar 

  124. Wang D, Zhou K, Yang W, Xing W, Hu Y, Gong X (2013) Surface modification of graphene with layered molybdenum disulfide and their synergistic reinforcement on reducing fire hazards of epoxy resins. Ind Eng Chem Res 52:17882. doi:10.1021/ie402441g

    Article  Google Scholar 

  125. Laachachi A, Cochez M, Leroy E, Gaudon P, Ferriol M, Lopez Cuesta JM (2006) Effect of Al2O3 and TiO2 nanoparticles and APP on thermal stability and flame retardance of PMMA. Polym Adv Technol 17:327. doi:10.1002/pat.690

    Article  Google Scholar 

  126. Zhou K, Gui Z, Hu Y (2016) The influence of graphene based smoke suppression agents on reduced fire hazards of polystyrene composites. Compos A 80:217. doi:10.1016/j.compositesa.2015.10.029

    Article  Google Scholar 

  127. Nie L, Liu C, Liu L, Jiang T, Hong J, Huang J (2015) Study of the thermal stability and flame retardant properties of graphene oxide-decorated zirconium organophosphate based on polypropylene nanocomposites. Rsc Advances 5:92318. doi:10.1039/c5ra13850g

    Article  Google Scholar 

  128. Huang G, Song P, Liu L et al (2016) Fabrication of multifunctional graphene decorated with bromine and nano-Sb2O3 towards high-performance polymer nanocomposites. Carbon 98:689. doi:10.1016/j.carbon.2015.11.063

    Article  Google Scholar 

  129. Li P, Zheng Y, Li M et al (2016) Enhanced flame-retardant property of epoxy composites filled with solvent-free and liquid-like graphene organic hybrid material decorated by zinc hydroxystannate boxes. Compos A 81:172. doi:10.1016/j.compositesa.2015.11.013

    Article  Google Scholar 

  130. Gao T, Chen L, Li Z, Yu L, Wu Z, Zhang Z (2016) Preparation of zinc hydroxystannate-decorated graphene oxide nanohybrids and their synergistic reinforcement on reducing fire hazards of flexible poly (vinyl chloride). Nanoscale Res Lett 11:192. doi:10.1186/s11671-016-1403-z

    Article  Google Scholar 

  131. Pan H, Wang W, Pan Y, Song L, Hu Y, Liew KM (2015) Formation of layer-by-layer assembled titanate nanotubes filled coating on flexible polyurethane foam with improved flame retardant and smoke suppression properties. ACS appl mater & interfaces 7:101. doi:10.1021/am507045g

    Article  Google Scholar 

  132. Bai S, Shen X (2012) Graphene–inorganic nanocomposites. Rsc Advances 2:64. doi:10.1039/c1ra00260k

    Article  Google Scholar 

  133. Zhu J, Chen M, He Q, Shao L, Wei S, Guo Z (2013) An overview of the engineered graphene nanostructures and nanocomposites. Rsc Advances 3:22790. doi:10.1039/c3ra44621b

    Article  Google Scholar 

  134. Song P, Liu L, Fu S et al (2013) Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites. Nanotechnology 24:125704. doi:10.1088/0957-4484/24/12/125704

    Article  Google Scholar 

  135. Zhuo D, Wang R, Wu L et al (2013) Flame retardancy effects of graphene nanoplatelet/carbon nanotube hybrid membranes on carbon fiber reinforced epoxy composites. Journal of Nanomaterials 2013:1. doi:10.1155/2013/820901

    Article  Google Scholar 

  136. Kausar A (2014) Formation and properties of poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate)/polystyrene composites reinforced with graphene oxide-nanodiamond. Am J Polym Sci 4:54. doi:10.5923/j.ajps.20140402.05

    Google Scholar 

  137. Song PA, Liu LN, Huang GB, Yu YM, Guo QP (2013) Largely enhanced thermal and mechanical properties of polymer nanocomposites via incorporating C-60@ graphene nanocarbon hybrid. Nanotechnology 24:505706. doi:10.1088/0957-4484/24/50/505706

    Article  Google Scholar 

  138. Zhou L, Liu H, Zhang X (2015) Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers. J Mater Sci 50:2797. doi:10.1007/s10853-015-8837-z

    Article  Google Scholar 

  139. Wang F, Drzal LT, Qin Y, Huang Z (2015) Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci 50:1082. doi:10.1007/s10853-014-8665-6

    Article  Google Scholar 

  140. Li X, Wang Z, Wu L (2015) Preparation of a silica nanospheres/graphene oxide hybrid and its application in phenolic foams with improved mechanical strengths, friability and flame retardancy. Rsc Advances 5:99907. doi:10.1039/c5ra19830e

    Article  Google Scholar 

  141. Chen L, Chai S, Liu K et al (2012) Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface. ACS appl mater interfaces 4:4398. doi:10.1021/am3010576

    Article  Google Scholar 

  142. Wang R, Zhuo D, Weng Z et al (2015) A novel nanosilica/graphene oxide hybrid and its flame retarding epoxy resin with simultaneously improved mechanical, thermal conductivity, and dielectric properties. J Mater Chem A 3:9826. doi:10.1039/C5TA00722D

    Article  Google Scholar 

  143. Qian X, Yu B, Bao C et al (2013) Silicon nanoparticle decorated graphene composites: preparation and their reinforcement on the fire safety and mechanical properties of polyurea. J Mater Chem A 1:9827. doi:10.1039/c3ta11730h

    Article  Google Scholar 

  144. Wicklein B, Kocjan A, Salazar-Alvarez G et al (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10:277. doi:10.1038/nnano.2014.248

    Article  Google Scholar 

  145. Huang G, Chen S, Liang H, Wang X, Gao J (2013) Combination of graphene and montmorillonite reduces the flammability of poly(vinyl alcohol) nanocomposites. Appl Clay Sci 80–81:433. doi:10.1016/j.clay.2013.01.005

    Article  Google Scholar 

  146. Ming P, Song Z, Gong S et al (2015) Nacre-inspired integrated nanocomposites with fire retardant properties by graphene oxide and montmorillonite. J Mater Chem A 3:21194. doi:10.1039/c5ta05742f

    Article  Google Scholar 

  147. Li LL, Chen SH, Ma WJ et al (2014) A novel reduced graphene oxide decorated with halloysite nanotubes (HNTs-d-rGO) hybrid composite and its flame-retardant application for polyamide 6. Express Polym Lett 8:450. doi:10.3144/expresspolymlett.2014.48

    Article  Google Scholar 

  148. Tang Z, Wei Q, Lin T, Guo B, Jia D (2013) The use of a hybrid consisting of tubular clay and graphene as a reinforcement for elastomers. Rsc Advances 3:17057. doi:10.1039/c3ra42568a

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the Ministry of Science and technology of China (973 Program; grant No. 2015CB654703), the National Natural Science Foundation of China (grant No. 21371050) and the Science and Technology Research Program of Henan Educational Committee (grant No. 16A430001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-wei Li or Zhi-jun Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, B., Li, Zw., Li, Xh. et al. Graphene-based flame retardants: a review. J Mater Sci 51, 8271–8295 (2016). https://doi.org/10.1007/s10853-016-0124-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0124-0

Keywords

Navigation