Skip to main content
Log in

Competitive influence of surface area and mesopore size on gas-sensing properties of SnO2 hollow fibers

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, the effects of surface area and mesopore size on gas-sensing properties of SnO2 hollow microfibers assembled by nanocrystals were investigated. When the sintering time was increased from 2 to 24 h, the specific surface area (SSA) of SnO2 microfibers decreased from 103.6 to 59.8 m2 g−1, whereas the mesopore diameter gradually increased from 2.8 to 10.9 nm. Interestingly, it was found that their gas-sensing properties to ppb-level formaldehyde were determined by both SSA and mesopore size. The gas response increased firstly and then decreased with decreasing SSA and increasing mesopore size and reached the maximum value when the sintering time was 11 h. When the sintering time was <11 h, mesopore size (<8.5 nm) dominated sensing behavior by controlling gas diffusion rate. Once the sintering time was more than 11 h, the decreased SSA (<70.8 m2 g−1) dominated sensing performance by influencing the surface reaction activity. Therefore, the competitive influence of surface area and mesopore size on gas-sensing properties of mesoporous SnO2 microfibers was revealed. This work could provide a new understanding for microstructural design of the mesoporous gas-sensing metal oxide materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ding X, Zeng D, Zhang S, Xie C (2011) C-doped WO3 microtubes assembled by nanoparticles with ultrahigh sensitivity to toluene at low operating temperature. Sens Actuators B Chem 155:86–92. doi:10.1016/j.snb.2010.11.030

    Article  Google Scholar 

  2. Sarkar S, Basak D (2013) Synthesis of dense intersecting branched tree-like ZnO nanostructures and its superior LPG sensing property. Sens Actuators B Chem 176:374–378. doi:10.1016/j.snb.2012.10.095

    Article  Google Scholar 

  3. Wang Y, Jiang X, Xia Y (2003) A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc 125:16176–16177. doi:10.1021/ja037743f

    Article  Google Scholar 

  4. Yi S, Tian S, Zeng D et al (2013) An In2O3 nanowire-like network fabricated on coplanar sensor surface by sacrificial CNTs for enhanced gas sensing performance. Sens Actuators B Chem 185:345–353. doi:10.1016/j.snb.2013.05.007

    Article  Google Scholar 

  5. Ab Kadir R, Zhang W, Wang Y et al (2015) Anodized nanoporous WO 3 Schottky contact structures for hydrogen and ethanol sensing. J Mater Chem A 3:7994–8001. doi:10.1039/C4TA06286H

    Article  Google Scholar 

  6. Chwieroth B, Patton BR, Wang Y (2001) Conduction and gas-surface reaction modeling in metal oxide gas sensors. J Electroceramics 6:27–41

    Article  Google Scholar 

  7. Tiemann M (2007) Porous metal oxides as gas sensors. Chem-A Eur J 13:8376–8388. doi:10.1002/chem.200700927

    Article  Google Scholar 

  8. Matsunaga N, Sakai G, Shimanoe K, Yamazoe N (2002) Diffusion equation-based study of thin film semiconductor gas sensor-response transient. Sens Actuators B Chem 83:216–221

    Article  Google Scholar 

  9. Wu N-L, Tung C-Y (2004) Evolution in microstructural properties of cetyltrimethylammonium bromide-templated mesoporous tin oxide upon thermal crystallization. J Am Ceram Soc 87:1741–1746

    Article  Google Scholar 

  10. Landau O, Rothschild A (2012) Microstructure evolution of TiO2 gas sensors produced by electrospinning. Sens Actuators B Chem 171–172:118–126. doi:10.1016/j.snb.2011.12.061

    Article  Google Scholar 

  11. Li L-L, Zhang W-M, Yuan Q et al (2008) Room temperature ionic liquids assisted green synthesis of nanocrystalline porous SnO2 and their gas sensor behaviors. Cryst Growth Des 8:4165–4172

    Article  Google Scholar 

  12. Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens Actuators B Chem 107:209–232

    Article  Google Scholar 

  13. Li G-J, Kawi S (1998) Synthesis, characterization and sensing application of novel semiconductor oxides. Talanta 45:759–766

    Article  Google Scholar 

  14. Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sens Actuators B Chem 5:7–19

    Article  Google Scholar 

  15. Korotcenkov G, Cho BK (2010) Porous semiconductors: advanced material for gas sensor applications. Crit Rev Solid State Mater Sci 35:1–37. doi:10.1080/10408430903245369

    Article  Google Scholar 

  16. Melde BJ, Johnson BJ (2010) Mesoporous materials in sensing: morphology and functionality at the meso-interface. Anal Bioanal Chem 398:1565–1573. doi:10.1007/s00216-010-3688-6

    Article  Google Scholar 

  17. Sakai G, Matsunaga N, Shimanoe K, Yamazoe N (2001) Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens Actuators B Chem 80:125–131. doi:10.1016/S0925-4005(01)00890-5

    Article  Google Scholar 

  18. Tian S, Ding X, Zeng D et al (2013) Pore-size-dependent sensing property of hierarchical SnO2 mesoporous microfibers as formaldehyde sensors. Sens Actuators B Chem 186:640–647. doi:10.1016/j.snb.2013.06.073

    Article  Google Scholar 

  19. Liu Z, Yamazaki T, Shen Y et al (2007) Influence of annealing on microstructure and NO2-sensing properties of sputtered WO3 thin films. Sens Actuators B Chem 128:173–178. doi:10.1016/j.snb.2007.06.001

    Article  Google Scholar 

  20. Hyodo T, Nishida N, Shimizu Y, Egashira M (2002) Preparation and gas-sensing properties of thermally stable mesoporous SnO2. Sens Actuators B Chem 83:209–215. doi:10.1016/S0925-4005(01)01042-5

    Article  Google Scholar 

  21. Reddy N, Yang Y (2007) Structure and properties of natural cellulose fibers obtained from sorghum leaves and stems. J Agric Food Chem 55:5569–5574. doi:10.1021/jf0707379

    Article  Google Scholar 

  22. Cui Z, Liu J, Zeng D et al (2010) Quasi-one-dimensional bismuth tungsten oxide nanostructures templated by cotton fibers. J Am Ceram Soc 93:1479–1483. doi:10.1111/j.1551-2916.2010.03600.x

    Google Scholar 

  23. Sathyaseelan B, Senthilnathan K, Alagesan T et al (2010) A study on structural and optical properties of Mn- and Co-doped SnO2 nanocrystallites. Mater Chem Phys 124:1046–1050. doi:10.1016/j.matchemphys.2010.08.029

    Article  Google Scholar 

  24. Huang H, Lee YC, Tan OK et al (2009) High sensitivity SnO2 single-nanorod sensors for the detection of H2 gas at low temperature. Nanotechnology 20:115501. doi:10.1088/0957-4484/20/11/115501

    Article  Google Scholar 

  25. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13:3169–3183

    Article  Google Scholar 

  26. Xu C, Tamaki J, Miura N, Yamazoe N (1991) Grain size effects on gas sensitivity of porous SnO2-based elements. Sens Actuators B Chem 3:147–155

    Article  Google Scholar 

  27. Wang D, Hu P, Xu J et al (2009) Fast response chlorine gas sensor based on mesoporous SnO2. Sens Actuators B Chem 140:383–389. doi:10.1016/j.snb.2009.05.027

    Article  Google Scholar 

  28. Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R Rep 61:1–39

    Article  Google Scholar 

  29. Ma Y, Qu Y, Zhou W (2013) Surface engineering of one-dimensional tin oxide nanostructures for chemical sensors. Microchim Acta 180:1181–1200. doi:10.1007/s00604-013-1048-x

    Article  Google Scholar 

  30. Li G-J, Zhang X-H, Kawi S (1999) Relationships between sensitivity, catalytic activity, and surface areas of SnO2 gas sensors. Sens Actuators B Chem 60:64–70

    Article  Google Scholar 

  31. Baraton M-I, Merhari L (2001) Influence of the particle size on the surface reactivity and gas sensing properties of SnO2 nanopowders. Mater Trans 42:1616–1622

    Article  Google Scholar 

  32. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–50. doi:10.1002/smll.200500261

    Article  Google Scholar 

  33. Wagner T, Haffer S, Weinberger C et al (2013) Mesoporous materials as gas sensors. Chem Soc Rev 42:4036. doi:10.1039/c2cs35379b

    Article  Google Scholar 

  34. Korotcenkov G (2007) Practical aspects in design of one-electrode semiconductor gas sensors: Status report. Sens Actuators B Chem 121:664–678. doi:10.1016/j.snb.2006.04.092

    Article  Google Scholar 

  35. Rani RA, Zoolfakar AS, Ou JZ et al (2013) Nanoporous Nb2O5 hydrogen gas sensor. Sens Actuators B Chem 176:149–156. doi:10.1016/j.snb.2012.09.028

    Article  Google Scholar 

  36. Shimizu Y, Jono A, Hyodo T, Egashira M (2005) Preparation of large mesoporous SnO2 powder for gas sensor application. Sens Actuators B Chem 108:56–61. doi:10.1016/j.snb.2004.10.047

    Article  Google Scholar 

  37. Shek CH, Lai JKL, Lin GM (1999) Grain growth in nanocrystalline SnO2 prepared by sol-gel route. Nanostructured Mater 11:887–893

    Article  Google Scholar 

  38. Seo M-H, Yuasa M, Kida T et al (2009) Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes. Sens Actuators B Chem 137:513–520. doi:10.1016/j.snb.2009.01.057

    Article  Google Scholar 

  39. Kida T, Fujiyama S, Suematsu K et al (2013) Pore and particle size control of gas sensing films using SnO2 nanoparticles synthesized by seed-mediated growth: design of highly sensitive gas sensors. J Phys Chem C 117:17574–17582. doi:10.1021/jp4045226

    Article  Google Scholar 

  40. Shimizu Y, Maekawa T, Nakamura Y, Egashira M (1998) Effects of gas diffusivity and reactivity on sensing properties of thick film SnO2-based sensors. Sens Actuators B Chem 46:163–168. doi:10.1016/S0925-4005(97)00247-5

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (Grant Nos. 2009CB939702 and 2009CB939705) and Nature Science Foundation of China (No. 50772040 and 50927201). Also, this work was supported by Analytical and Testing Center of HUST for carrying out XRD, SEM, and TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dawen Zeng or Changsheng Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zeng, D., Tian, S. et al. Competitive influence of surface area and mesopore size on gas-sensing properties of SnO2 hollow fibers. J Mater Sci 50, 7725–7734 (2015). https://doi.org/10.1007/s10853-015-9339-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9339-8

Keywords

Navigation