Skip to main content

Advertisement

Log in

Effect of Y2O3 and CeO2 on the crystallisation behaviour and mechanical properties of glass–ceramics in the system MgO/Al2O3/SiO2/ZrO2

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of the addition of small amounts of Y2O3 or CeO2 to a parent glass of the composition 21.2 MgO·21.2 Al2O3·51.9 SiO2·5.7 ZrO2 (mol%) on the course of crystallisation and the mechanical properties of the respective glass–ceramics is examined. Depending on the applied heat-treatment procedure, glass–ceramics with Young’s moduli and bending strengths that are significantly better than those of the parent glass can be achieved. Using X-ray diffraction and scanning transmission electron microscopy including energy-dispersive X-ray spectrometry, the glass–ceramics are characterised in terms of temperature-induced microstructural changes and crystal phase evolvement. It is shown that the addition of 0.5 mol% Y2O3 leads to glass–ceramics with less advantageous mechanical properties than those of the additive-free material. Adding 0.5 mol% CeO2 to the parent glass, however, does not affect the strong improvement of the mechanical properties upon crystallisation. Glass–ceramics with Young’s moduli of up to 122 GPa and bending strengths of up to 350 GPa can be achieved this way. The addition of CeO2 has the advantage of adjusting the glass–ceramics colour to a certain extent, making it a promising candidate for artificial tooth replacement materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dittmer M, Yamamoto CF, Bocker C, Rüssel C (2011) Crystallization and mechanical properties of MgO/Al2O3/SiO2/ZrO2 glass-ceramics with and without the addition of yttria. Solid State Sci 13(12):2146–2153

    Article  Google Scholar 

  2. Gawronski A, Rüssel C (2013) High strength glass-ceramics in the system MgO/Y2O3/Al2O3/SiO2/ZrO2 without quartz as crystalline phase. J Mater Sci 48(9):3461–3468. doi:10.1007/s10853-013-7136-9

    Article  Google Scholar 

  3. Dittmer M, Rüssel C (2012) Colorless and high strength MgO/Al2O3/SiO2 glass-ceramic dental material using zirconia as nucleating agent. J Biomed Mater Res B 100B(2):463–470

    Article  Google Scholar 

  4. Gawronski A, Patzig C, Höche T, Rüssel C (2013) High-strength glass-ceramics in the system MgO/Al2O3/SiO2/ZrO2/Y2O3—microstructure and properties. CrystEngComm 15(31):6165–6176

    Article  Google Scholar 

  5. Dittmer M, Müller M, Rüssel C (2010) Self-organized nanocrystallinity in MgO-Al2O3-SiO2 glasses with ZrO2 as nucleating agent. Mater Chem Phys 124(2–3):1083–1088

    Article  Google Scholar 

  6. Zdaniewski W (1973) Crystallization and structure of a MgO-Al2O3-SiO2-TiO2 glass-ceramic. J Mater Sci 8(2):192–202. doi:10.1007/BF00550667

    Article  Google Scholar 

  7. Zdaniewski W (1975) DTA and X-ray analysis study of nucleation and crystallization of MgO-Al2O3-SiO2 glasses containing ZrO2, TiO2, and CeO2. J Am Ceram Soc 58(5–6):163–169

    Article  Google Scholar 

  8. Chen GH (2007) Effect of replacement of MgO by CaO on sintering, crystallization and properties of MgO-Al2O3-SiO2 system glass-ceramics. J Mater Sci 42(17):7239–7244. doi:10.1007/s10853-007-1548-3

    Article  Google Scholar 

  9. Devekey RC, Majumdar AJ (1970) Interfacial bond strength of glass fibre reinforced cement composites. J Mater Sci 5(2):183. doi:10.1007/BF00554638

    Article  Google Scholar 

  10. Hunger A, Carl G, Rüssel C (2010) Formation of nano-crystalline quartz crystals from ZnO/MgO/Al2O3/TiO2/ZrO2/SiO2 glasses. Solid State Sci 12(9):1570–1574

    Article  Google Scholar 

  11. Pinckney LR, Beall GH (1997) Nanocrystalline non-alkali glass-ceramics. J Non-Cryst Solids 219:219–227

    Article  Google Scholar 

  12. Chen GH, Liu XY (2007) Sintering, crystallization and properties of MgO-Al2O3-SiO2 system glass-ceramics containing ZnO. J Alloy Compd 431(1–2):282–286

    Article  Google Scholar 

  13. Katzschmann A, Wange P (1995) Processability, crystallization and mechanical strength of P2O5-modified glasses and glass-ceramics in the system MgO-Al2O3-SiO2-TiO2. Glastech Ber-Glass 68(4):111–116

    Google Scholar 

  14. Singh K, Gupta N, Pandey OP (2007) Effect of Y2O3 on the crystallization behavior of SiO2-MgO-B2O3-Al2O3 glasses. J Mater Sci 42(15):6426–6432. doi:10.1007/s10853-006-1188-z

    Article  Google Scholar 

  15. Kim BH, Lee KH (1994) Crystallization and sinterability of cordierite-based glass powders containing CeO2. J Mater Sci 29(24):6592–6598. doi:10.1007/BF00354026

    Article  Google Scholar 

  16. Sohn SB, Choi SY, Lee YK (2000) Controlled crystallization and characterization of cordierite glass-ceramics for magnetic memory disk substrate. J Mater Sci 35(19):4815–4821. doi:10.1023/A:1004876829705

    Article  Google Scholar 

  17. Sohn SB, Choi SY (2001) Crystallization behaviour in the glass system MgO-Al2O3-SiO2: influence of CeO2 addition. J Non-Cryst Solids 282(2–3):221–227

    Article  Google Scholar 

  18. Vogel W (1994) Glass chemistry, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  19. Shakelford JF, Alexander W (2001) Materials science and engineering handbook, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  20. Wange P, Höche T, Rüssel C, Schnapp ED (2002) Microstructure-property relationship in high-strength MgO-Al2O3-SiO2-TiO2 glass-ceramics. J Non-Cryst Solids 298(2–3):137–145

    Article  Google Scholar 

  21. Schreyer W, Schairer JF (1961) Metastable solid solutions with quartz-type structures on the join SiO2-MgAl2O4. Z Krist 116:60–82

    Article  Google Scholar 

  22. Höland W, Beall GH (2012) Glass-ceramic technology, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  23. Schwickert T, Sievering R, Geasee P, Conradt R (2002) Glass-ceramic materials as sealants for SOFC applications. Materialwiss Werkst 33(6):363–366

    Article  Google Scholar 

  24. Patzig C, Dittmer M, Höche T, Rüssel C (2012) Temporal evolution of crystallization in MgO-Al2O3-SiO2-ZrO2 glass ceramics. Cryst Growth Des 12(4):2059–2067

    Article  Google Scholar 

  25. Bhattacharyya S, Bocker C, Heil T, Jinschek JR, Höche T, Rüssel C, Kohl H (2009) Experimental evidence of self-limited growth of nanocrystals in glass. Nano Lett 9(6):2493–2496

    Article  Google Scholar 

  26. Bhattacharyya S, Höche T, Hemono N, Pascual MJ, van Aken PA (2009) Nano-crystallization in LaF3-Na2O-Al2O3-SiO2 glass. J Cryst Growth 311(18):4350–4355

    Article  Google Scholar 

  27. Bhattacharyya S, Höche T, Jinschek JR, Avramov I, Wurth R, Müller M, Rüssel C (2010) Direct evidence of al-rich layers around nanosized ZrTiO4 in glass: putting the role of nucleation agents in perspective. Cryst Growth Des 10(1):379–385

    Article  Google Scholar 

  28. Bocker C, Bhattacharyya S, Höche T, Rüssel C (2009) Size distribution of BaF2 nanocrystallites in transparent glass ceramics. Acta Mater 57(20):5956–5963

    Article  Google Scholar 

  29. de Pablos-Martin A, Mather GC, Munoz F, Bhattacharyya S, Höche T, Jinschek JR, Heil T, Duran A, Pascual MJ (2010) Design of oxy-fluoride glass-ceramics containing NaLaF4 nano-crystals. J Non-Cryst Solids 356(52–54):3071–3079

    Article  Google Scholar 

  30. Höche T, Patzig C, Gemming T, Wurth R, Rüssel C, Avramov I (2012) Temporal evolution of diffusion barriers surrounding ZrTiO4 nuclei in lithia aluminosilicate glass-ceramics. Cryst Growth Des 12(3):1556–1563

    Article  Google Scholar 

  31. de Pablos-Martin A, Patzig C, Höche T, Duran A, Pascual MJ (2013) Distribution of thulium in Tm3+-doped oxyfluoride glasses and glass-ceramics. CrystEngComm 15(35):6979–6985

    Article  Google Scholar 

  32. de Pablos-Martin A, Munoz F, Mather GC, Patzig C, Bhattacharyya S, Jinschek JR, Höche T, Duran A, Pascual MJ (2013) KLaF4 nanocrystallisation in oxyfluoride glass-ceramics. CrystEngComm 15(47):10323–10332

    Article  Google Scholar 

  33. Patzig C, Höche T, Hu YF, Ikeno H, Krause M, Dittmer M, Gawronski A, Rüssel C, Tanaka I, Henderson GS (2014) Zr coordination change during crystallization of MgO-Al2O3-SiO2-ZrO2 glass ceramics. J Non-Cryst Solids 384:47–54

    Article  Google Scholar 

  34. Blumenauer H (1994) Werkstoffprüfung, 6th edn. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  35. Höche T, Gerlach JW, Petsch T (2006) Static-charging mitigation and contamination avoidance by selective carbon coating of TEM samples. Ultramicroscopy 106(11–12):981–985

    Article  Google Scholar 

  36. Petzold A, Hinz W (1978) Silikatchemie, 1st edn. VEB Verlag, Leipzig

    Google Scholar 

  37. Wang ZL, Cheng LF (2014) Effects of doping CeO2/TiO2 on structure and properties of silicate glass. J Alloy Compd 597:167–174

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the German Research Foundation (DFG) under the Research Grants Nos. Ru 417/13-1 and Ho 1691/5-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Patzig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gawronski, A., Patzig, C., Höche, T. et al. Effect of Y2O3 and CeO2 on the crystallisation behaviour and mechanical properties of glass–ceramics in the system MgO/Al2O3/SiO2/ZrO2 . J Mater Sci 50, 1986–1995 (2015). https://doi.org/10.1007/s10853-014-8765-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8765-3

Keywords

Navigation