Skip to main content

Advertisement

Log in

High strength glass–ceramics in the system MgO/Y2O3/Al2O3/SiO2/ZrO2 without quartz as crystalline phase

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper is the first report on high strength glass–ceramics which mainly contain zirconia as crystalline phase. This is in contrast to previous reports on high strength glass–ceramics which contain low quartz as the crystalline phase. Glasses in the system MgO/Y2O3/Al2O3/SiO2 with zirconia as nucleating agent were melted. The samples were crystallised in a first step at 950 °C for different periods of time and in the second step at 1060 °C for 1 h. The prepared glasses and glass–ceramics were characterised using differential thermal analysis, dilatometry, X-ray diffraction, and scanning electron microscopy. As shown by X-ray diffraction after the first step in every analysed composition, zirconia was precipitated. With increasing crystallisation time and temperature and depending on the composition, the other phases such as β- or α-quartz solid solutions, spinel and indialite were precipitated. With higher yttria concentrations and increasing crystallisation temperatures during the second crystallisation step, the main crystalline phase was zirconia whereas the quartz solid solution was no longer observed. Bending strengths up to 450 MPa and Young′s moduli up to 115 GPa were obtained after the two subsequent crystallisation steps. Higher yttria concentrations resulted in an increase in density and microhardness. The maximum Vickers hardness was 10.5 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wange P, Höche T, Rüssel C, Schnapp JD (2002) J Non-Cryst Solids 298:137

    Article  CAS  Google Scholar 

  2. Zdaniewski W (1973) J Mater Sci 8:192. doi:10.1007/BF00550667

    Article  CAS  Google Scholar 

  3. Dittmer M, Müller M, Rüssel C (2010) Mater Chem Phys 124:1083

    Article  CAS  Google Scholar 

  4. Zdaniewski W (1975) J Am Ceram Soc 58:163

    Article  CAS  Google Scholar 

  5. McCoy M, Lee WE, Heuer AH (1986) J Am Ceram Soc 69:292

    Article  CAS  Google Scholar 

  6. Hunger A, Carl G, Gebhardt A, Rüssel C (2008) J Non-Cryst Solids 354:5402

    Article  CAS  Google Scholar 

  7. Hunger A, Carl G, Gebhardt A, Rüssel C (2010) Mater Chem Phys 122:502

    Article  CAS  Google Scholar 

  8. Hunger A, Carl G, Rüssel C (2010) Solid State Sci 12:1570

    Article  CAS  Google Scholar 

  9. Pinckney LR, Beall GH (1997) J Non-Cryst Solids 219:219

    Article  CAS  Google Scholar 

  10. Chen GH, Liu XY (2007) J Alloy Compd 431:282

    Article  CAS  Google Scholar 

  11. Katzschmann A, Wange P (1995) Glastech Ber Glass Sci Technol 68:111

    CAS  Google Scholar 

  12. Chen GH (2007) J Mater Sci 42:7239. doi:10.1007/s10853-007-1548

    Article  CAS  Google Scholar 

  13. Sohn S-B, Choi S-Y, Lee Y-K (2000) J Non-Cryst Solids 35:4815

    CAS  Google Scholar 

  14. Vogel W (1994) Glass chemistry, 2nd edn. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  15. Singh K, Gupta N, Pandey OP (2007) J Mater Sci 42:6426. doi:10.1007/s10853-006-1188

    Article  CAS  Google Scholar 

  16. Schwickert T, Sievering R, Geasee P, Conradt T (2002) Mater-Wiss u Werkstofftech 33:363

    Google Scholar 

  17. Evans AG, Charles EA (1976) J Am Ceram Soc 59:371

    Article  CAS  Google Scholar 

  18. Neilson GF (1970) Discuss Faraday Soc 50:145

    Article  Google Scholar 

  19. Neilson GF (1972) J Appl Phys 43:3728

    Article  CAS  Google Scholar 

  20. Hirose Y, Doi H, Kamigaito O (1984) J Mater Sci Lett 3:153

    Article  CAS  Google Scholar 

  21. Höland W, Wange P, Carl G, Vogel W, Heidenreich E, Erxleben H (1984) Silikattechnik 35:181

    Google Scholar 

  22. Dittmer M, Yamamoto CF, Bocker C, Rüssel C (2011) Solid State Sci 13:2146

    Article  CAS  Google Scholar 

  23. Wange P, Carl G, Naumann K, Vogel J, Vogel W, Götz W, Höland W (1991) Silicates Ind 1&2:21

    Google Scholar 

  24. Carl G, Höche T, Voigt G (2002) Phys Chem Glasses 43C:256

    Google Scholar 

  25. Shackelford JF, Alexander W (2001) CRC Mater Sci Eng Handbook, 3rd edn., CRC Press, Boca Raton, FL

  26. Garvie RC, Hannink RH, Pascoe RT (1975) Nature 258:703

    Article  CAS  Google Scholar 

  27. Tomozawa M (1991) High-toughness glass–ceramics, Rensselaer Polytechnic Institute, Troy, (DAAL03-89-K-0046)—Final Report (U.S. Army Research Office)

  28. Clark DR, Schwartz W (1987) J Mater Res 2:801

    Article  Google Scholar 

  29. Chevalier J, Gremillard L (2009) J Am Ceram Soc 92:1901

    Article  CAS  Google Scholar 

  30. Bocanegra-Bernal MH, Diaz de la Torre S (2002) J Mater Sci 37:4947. doi:10.3760/cma.j.issn.0366-6999.2012.11.029

    Article  CAS  Google Scholar 

  31. Yu MQ, Fan SG, Shen Q, Zhang LM (2003) Key Eng Mater 249:167

    Article  CAS  Google Scholar 

  32. de Almeida RPF, Bocker C, Rüssel C (2008) Chem Mater 20:5916

    Article  Google Scholar 

  33. Bocker C, Rüssel C (2009) J Eur Ceram Soc 29:1221

    Article  CAS  Google Scholar 

  34. Bhattacharyya S, Bocker C, Heil T, Jinschek JR, Höche T, Rüssel C, Kohl H (2009) Nano Lett 9:2493

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rüssel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gawronski, A., Rüssel, C. High strength glass–ceramics in the system MgO/Y2O3/Al2O3/SiO2/ZrO2 without quartz as crystalline phase. J Mater Sci 48, 3461–3468 (2013). https://doi.org/10.1007/s10853-013-7136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7136-9

Keywords

Navigation