Skip to main content
Log in

Comparative analysis of electronic properties of tin, gallium, and bismuth chalcogenide-filled single-walled carbon nanotubes

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, the channels of single-walled carbon nanotubes (SWCNTs) were filled with tin sulfide (SnS), gallium telluride (GaTe), and bismuth selenide (Bi2Se3). The successful encapsulation of the compounds was proven by high-resolution transmission electron microscopy. The electronic properties of the filled SWCNTs were studied by optical absorption spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was found that the embedded metal chalcogenides have different influence on the electronic properties of the nanotubes. The incorporation of tin sulfide into the SWCNTs does not result in sufficient changes in the electronic structure of SWCNTs, except for a minor influence on metallic nanotubes. The filling of SWCNTs with gallium telluride causes the charge transfer from the SWCNT walls to the encapsulated compound due to acceptor doping of the nanotubes. The insertion of bismuth selenide inside the SWCNT channels does not lead to the modification of the electronic properties of nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  2. Kharlamova MV (2013) Electronic properties of pristine and modified single-walled carbon nanotubes. Physics - Uspekhi 56:1047–1073

    Article  Google Scholar 

  3. Monthioux M, Flahaut E, Cleuziou JP (2006) Hybrid carbon nanotubes: strategy, progress, and perspectives. J Mater Res 21:2774–2793

    Article  Google Scholar 

  4. Monthioux M (2002) Filling single-wall carbon nanotubes. Carbon 40:1809–1823

    Article  Google Scholar 

  5. Eliseev AA, Kharlamova MV, Chernysheva MV, Lukashin AV, Tretyakov YuD, Kumskov AS, Kiselev NA (2009) Preparation and properties of single-walled nanotubes filled with inorganic compounds. Russ Chem Rev 78:833–854

    Article  Google Scholar 

  6. Yanagisawa S, Tashiro M, Anzai S (1969) Crystal structure of magnesium ditelluride. J Inorg Nucl Chem 31:943–946

    Article  Google Scholar 

  7. Kurtin S, Mead CA (1969) Surface barriers on layer semiconductors: GaS, GaSe, GaTe. J Phys Chem Solids 30:2007–2009

    Article  Google Scholar 

  8. Trumbore FA, Broadhea J, Putvinsk TM (1973) Transition-metal chalcogenide cathode materials for lithium-nonaqueous batteries. J Electrochem Soc 120:C229–C229

    Google Scholar 

  9. Bazakutsa VA, Gnidash NI, Kulchitskaya AK, Salov AV (1975) Photoelectrical and optical properties of thin-films of ternary chalcogenide compounds. Izvestiya Visshikh Uchebnykh Zavedenii Fizika 4:42–46

    Google Scholar 

  10. Bernevig BA, Hughes TL, Zhang SC (2006) Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314:1757–1761

    Article  Google Scholar 

  11. Koenig M, Wiedmann S, Bruene C, Roth A, Buhmann H, Molenkamp LW, Qi XL, Zhang SC (2007) Quantum spin hall insulator state in HgTe quantum wells. Science 318:766–770

    Article  Google Scholar 

  12. Roth A, Bruene C, Buhmann H, Molenkamp LW, Maciejko J, Qi XL, Zhang SC (2009) Nonlocal transport in the quantum spin Hall state. Science 325:294–297

    Article  Google Scholar 

  13. Zhang H, Liu CX, Qi XL, Dai X, Fang Z, Zhang SC (2009) Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys 5:438–442

    Article  Google Scholar 

  14. Sloan J, Kirkland AI, Hutchison JL, Green MLH (2003) Aspects of crystal growth within carbon nanotubes. C R Phys 4:1063–1074

    Article  Google Scholar 

  15. Sloan J, Friedrichs S, Meyer RR, Kirkland AI, Hutchison JL, Green MLH (2002) Structural changes induced in nanocrystals of binary compounds confined within single walled carbon nanotubes: a brief review. Inorg Chim Acta 330:1–12

    Article  Google Scholar 

  16. Meyer RR, Sloan J, Dunin-Borkowski RE, Kirkland AI, Novotny MC, Bailey SR, Hutchison JL, Green MLH (2000) Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 289:1324–1326

    Article  Google Scholar 

  17. Kirkland AI, Meyer MR, Sloan J, Hutchison JL (2005) Structure determination of atomically controlled crystal architectures grown within single wall carbon nanotubes. Microsc Microanal 11:401–409

    Article  Google Scholar 

  18. Philp E, Sloan J, Kirkland AI, Meyer RR, Friedrichs S, Hutchison JL, Green MLH (2003) An encapsulated helical one-dimensional cobalt iodide nanostructure. Nat Mater 2:788–791

    Article  Google Scholar 

  19. Takenobu T, Takano T, Shiraishi M, Murakami Y, Ata M, Kataura H, Achiba Y, Iwasa Y (2003) Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat Mater 2:683–688

    Article  Google Scholar 

  20. Li LJ, Khlobystov AN, Wiltshire JG, Briggs GAD, Nicholas RJ (2005) Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nat Mater 4:481–485

    Article  Google Scholar 

  21. Kharlamova MV, Sauer M, Saito T, Krause S, Liu X, Yanagi K, Pichler T, Shiozawa H (2013) Inner tube growth properties and electronic structure of ferrocene-filled large diameter single-walled carbon nanotubes. Phys Status Solidi B 250:2575–2580

    Article  Google Scholar 

  22. Shiozawa H, Pichler T, Gruneis A, Pfeiffer R, Kuzmany H, Liu Z, Suenaga K, Kataura H (2008) A catalytic reaction inside a single-walled carbon nanotube. Adv Mater 20:1443–1449

    Article  Google Scholar 

  23. Govindaraj A, Satishkumar BC, Nath M, Rao CNR (2000) Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem Mater 12:202–205

    Article  Google Scholar 

  24. Corio P, Santos AP, Santos PS, Temperini MLA, Brar VW, Pimenta MA, Dresselhaus MS (2004) Characterization of single wall carbon nanotubes filled with silver and with chromium compounds. Chem Phys Lett 383:475–480

    Article  Google Scholar 

  25. Kharlamova MV, Niu JJ (2012) Comparison of metallic silver and copper doping effects on single-walled carbon nanotubes. Appl Phys A 109:25–29

    Article  Google Scholar 

  26. Kharlamova MV, Niu JJ (2012) New method of the directional modification of the electronic structure of single-walled carbon nanotubes by filling channels with metallic copper from a liquid phase. JETP Lett 95:314–319

    Article  Google Scholar 

  27. Kharlamova MV, Niu JJ (2012) Donor doping of single-walled carbon nanotubes by filling of channels with silver. J Exp Theor Phys 115:485–491

    Article  Google Scholar 

  28. Hulman M, Kuzmany H, Costa PMFJ, Friedrichs S, Green MLH (2004) Light-induced instability of PbO-filled single-wall carbon nanotubes. Appl Phys Lett 85:2068–2070

    Article  Google Scholar 

  29. Thamavaranukup N, Hoppe HA, Ruiz-Gonzalez L, Costa PMFJ, Sloan J, Kirkland A, Green MLH (2004) Single-walled carbon nanotubes filled with M OH (M = K, Cs) and then washed and refilled with clusters and molecules. Chem Commun 15:1686–1687

    Article  Google Scholar 

  30. Costa PMFJ, Sloan J, Rutherford T, Green MLH (2005) Encapsulation of RexOy clusters within single-walled carbon nanotubes and their in tubulo reduction and sintering to Re metal. Chem Mater 17:6579–6582

    Article  Google Scholar 

  31. Carter R, Sloan J, Kirkland AI, Meyer RR, Lindan PJD, Lin G, Green MLH, Vlandas A, Hutchison JL, Harding J (2006) Correlation of structural and electronic properties in a new low-dimensional form of mercury telluride. Phys Rev Lett 96:215501

    Article  Google Scholar 

  32. Sloan J, Carter R, Meyer RR, Vlandas A, Kirkland AI, Lindan PJD, Lin G, Harding J, Hutchison JL (2006) Structural correlation of band-gap modifications induced in mercury telluride by dimensional constraint in single walled carbon nanotubes. Phys Status Solidi B 243:3257–3262

    Article  Google Scholar 

  33. Carter R, Suyetin M, Lister S, Dyson MA, Trewhitt H, Goel S, Liu Z, Suenaga K, Giusca C, Kashtiban RJ, Hutchison JL, Dore JC, Bell GR, Bichoutskaia E, Sloan J (2014) Band gap expansion, shear inversion phase change behaviour and low-voltage induced crystal oscillation in low-dimensional tin selenide crystals. Dalton Trans 43:7391–7399

    Article  Google Scholar 

  34. Yashina LV, Eliseev AA, Kharlamova MV, Volykhov AA, Egorov AV, Savilov SV, Lukashin AV, Puttner R, Belogorokhov AI (2011) Growth and characterization of one-dimensional SnTe crystals within the single-walled carbon nanotube channels. J Phys Chem C 115:3578–3586

    Article  Google Scholar 

  35. Wang ZY, Li H, Liu Z, Shi ZJ, Lu J, Suenaga K, Joung SK, Okazaki T, Gu ZN, Zhou J, Gao ZX, Li GP, Sanvito S, Wang EG, Iijima S (2010) Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes. J Am Chem Soc 132:13840–13847

    Article  Google Scholar 

  36. Kharlamova MV (2013) Novel approach to tailoring the electronic properties of single-walled carbon nanotubes by the encapsulation of high-melting gallium selenide using a single-step process. JETP Lett 98:272–277

    Article  Google Scholar 

  37. Kharlamova MV, Yashina LV, Lukashin AV (2013) Comparison of modification of electronic properties of single-walled carbon nanotubes filled with metal halogenide, chalcogenide, and pure metal. Appl Phys A 112:297–304

    Article  Google Scholar 

  38. Li LJ, Lin TW, Doig J, Mortimer IB, Wiltshire JG, Taylor RA, Sloan J, Green MLH, Nicholas RJ (2006) Crystal-encapsulation-induced band-structure change in single-walled carbon nanotubes: photoluminescence and Raman spectra. Phys Rev B 74:245418

    Article  Google Scholar 

  39. Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103:2555–2558

    Article  Google Scholar 

  40. Eliseev AA, Yashina LV, Brzhezinskaya MM, Chernysheva MV, Kharlamova MV, Verbitsky NI, Lukashin AV, Kiselev NA, Kumskov AS, Zakalyuhin RM, Hutchison JL, Freitag B, Vinogradov AS (2010) Structure and electronic properties of AgX (X = Cl, Br, I)-intercalated single-walled carbon nanotubes. Carbon 48:2708–2721

    Article  Google Scholar 

  41. Eliseev AA, Yashina LV, Verbitskiy NI, Brzhezinskaya MM, Kharlamova MV, Chernysheva MV, Lukashin AV, Kiselev NA, Kumskov AS, Freitag B, Generalov AV, Vinogradov AS, Zubavichus YV, Kleimenov E, Nachtegaal M (2012) Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X = Cl, Br, I) nanostructures. Carbon 50:4021–4039

    Article  Google Scholar 

  42. Kharlamova MV, Eliseev AA, Yashina LV, Petukhov DI, Liu CP, Wang CY, Semenenko DA, Belogorokhov AI (2010) Study of the electronic structure of single-walled carbon nanotubes filled with cobalt bromide. JETP Lett 91:196–200

    Article  Google Scholar 

  43. Kharlamova MV, Yashina LV, Eliseev AA, Volykhov AA, Neudachina VS, Brzhezinskaya MM, Zyubina TS, Lukashin AV, Tretyakov YuD (2012) Single-walled carbon nanotubes filled with nickel halogenides: atomic structure and doping effect. Phys Status Solidi B 249:2328–2332

    Article  Google Scholar 

  44. Kharlamova MV, Yashina LV, Volykhov AA, Niu JJ, Neudachina VS, Brzhezinskaya MM, Zyubina TS, Belogorokhov AI, Eliseev AA (2012) Acceptor doping of single-walled carbon nanotubes by encapsulation of zinc halogenides. Eur Phys J B 85:34

    Article  Google Scholar 

  45. Kharlamova MV, Yashina LV, Lukashin AV (2013) Charge transfer in single-walled carbon nanotubes filled with cadmium halogenides. J Mater Sci 48:8412–8419

    Article  Google Scholar 

  46. Kharlamova MV (2013) Comparison of influence of incorporated 3d-, 4d-and 4f-metal chlorides on electronic properties of single-walled carbon nanotubes. Appl Phys A 111:725–731

    Article  Google Scholar 

  47. Dresselhaus MS, Dresselhaus G, Jorio A, Filho AGS, Saito R (2002) Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40:2043–2061

    Article  Google Scholar 

  48. Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49:705–814

    Article  Google Scholar 

  49. Jorio A, Pimenta M, Filho AS, Saito R, Dresselhaus G, Dresselhaus MS (2003) Characterizing carbon nanotube samples with resonance Raman scattering. New J Phys 5:139

    Article  Google Scholar 

  50. Fouquet M, Telg H, Maultzsch J, Wu Y, Chandra B, Hone J, Heinz TF, Thomsen C (2009) Longitudinal optical phonons in metallic and semiconducting carbon nanotubes. Phys Rev Lett 102:075501

    Article  Google Scholar 

  51. Brown SDM, Corio P, Marucci A, Dresselhaus MS, Pimenta MA, Kneipp K (2000) Anti-Stokes Raman spectra of single-walled carbon nanotubes. Phys Rev B 61:R5137–R5140

    Article  Google Scholar 

  52. Araujo PT, Maciel IO, Pesce PBC, Pimenta MA, Doorn SK, Qian H, Hartschuh A, Steiner M, Grigorian L, Hata K, Jorio A (2008) Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Phys Rev B 77:241403

    Article  Google Scholar 

  53. Piscanec S, Lazzeri M, Robertson J, Ferrari AC, Mauri F (2007) Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. Phys Rev B 75:035427

    Article  Google Scholar 

  54. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99

    Article  Google Scholar 

  55. Jorio A, Souza AG, Dresselhaus G, Dresselhaus MS, Swan AK, Unlu MS, Goldberg BB, Pimenta MA, Hafner JH, Lieber CM, Saito R (2002) G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys Rev B 65:155412

    Article  Google Scholar 

  56. Park JS, Sasaki K, Saito R, Izumida W, Kalbac M, Farhat H, Dresselhaus G, Dresselhaus MS (2009) Fermi energy dependence of the G-band resonance Raman spectra of single-wall carbon nanotubes. Phys Rev B 80:081402

    Article  Google Scholar 

  57. Sasaki K, Farhat H, Saito R, Dresselhaus MS (2010) Kohn anomaly in Raman spectroscopy of single wall carbon nanotubes. Physica E 42:2005–2015

    Article  Google Scholar 

  58. Dresselhaus MS, Jorio A, Saito R (2010) Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu Rev Condens Matter Phys 1:89–108

    Article  Google Scholar 

  59. Sauer M, Shiozawa H, Ayala P, Ruiz-Soria G, Liu X, Chernov A, Krause S, Yanagi K, Kataura H, Pichler T (2013) Internal charge transfer in metallicity sorted ferrocene filled carbon nanotube hybrids. Carbon 59:237–245

    Article  Google Scholar 

  60. Ichimura M, Takeuchi K, Ono Y, Arai E (2000) Electrochemical deposition of SnS thin films. Thin Solid Films 361–362:98–101

    Article  Google Scholar 

  61. Giorgianni U, Mondio G, Perillo P, Saitta G, Vermiglio G (1977) IR and UV-visible spectra of layer semiconductors GaS, GaSe and GaTe. Journal de Physique 38:1293–1299

    Article  Google Scholar 

  62. Yazyev OV, Kioupakis E, Moore JE, Louie SG (2012) Quasiparticle effects in the bulk and surface-state bands of Bi2Se3 and Bi2Te3 topological insulators. Phys Rev B 85:161101(R)

    Article  Google Scholar 

Download references

Acknowledgements

SWCNTs were synthesized by Dr. A.V. Krestinin (Institute of Problems of Chemical Physics RAS, Chernogolovka, Russia). M.V. Kharlamova thanks Dr. J.J. Niu (Drexel University, USA) for the HRTEM measurements. The XP spectra were recorded together with Dr. L.V. Yashina within a special course at Department of Materials Science of Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kharlamova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharlamova, M.V. Comparative analysis of electronic properties of tin, gallium, and bismuth chalcogenide-filled single-walled carbon nanotubes. J Mater Sci 49, 8402–8411 (2014). https://doi.org/10.1007/s10853-014-8550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8550-3

Keywords

Navigation