Skip to main content
Log in

Charge transfer in single-walled carbon nanotubes filled with cadmium halogenides

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work the internal channels of the single-walled carbon nanotubes (SWCNTs) were filled with cadmium chloride, cadmium bromide, and cadmium iodide by a capillary method using melts of these salts. The influence of incorporated chemical compounds on the electronic properties of the carbon nanotubes was investigated by optical absorption spectroscopy, Raman spectroscopy, near edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. It was found that there is the chemical bonding between carbon atoms of nanotube walls and metal atoms of encapsulated CdX2 nanocrystals. The obtained data testify acceptor doping effect of cadmium halogenides incorporated into the SWCNT channels, which is accompanied by the charge transfer from nanotube walls to introduced substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith BW, Monthioux M, Luzzi DE (1998) Nature 396:323. doi:10.1038/24521

    Article  CAS  Google Scholar 

  2. Sloan J, Hammer J, Zwiefka-Sibley M, Green MLH (1998) Chem Commun 3:347. doi:10.1039/a707632k

    Article  Google Scholar 

  3. Monthioux M (2002) Carbon 40:1809. doi:10.1016/S0008-6223(02)00102-1

    Article  CAS  Google Scholar 

  4. Monthioux M, Flahaut E, Cleuziou JP (2006) J Mater Res 21:2774. doi:10.1557/JMR.2006.0366

    Article  CAS  Google Scholar 

  5. Eliseev AA, Kharlamova MV, Chernysheva MV, Lukashin AV, Tretyakov YuD, Kumskov AS, Kiselev NA (2009) Russ Chem Rev 78:833. doi:10.1070/RC2009v078n09ABEH004077

    Article  CAS  Google Scholar 

  6. Govindaraj A, Satishkumar BC, Nath M, Rao CNR (2000) Chem Mater 12:202. doi:10.1021/cm990546o

    Article  CAS  Google Scholar 

  7. Corio P, Santos AP, Santos PS, Temperini MLA, Brar VW, Pimenta MA, Dresselhaus MS (2004) Chem Phys Lett 383:475. doi:10.1016/j.cplett.2003.11.061

    Article  CAS  Google Scholar 

  8. Sloan J, Kirkland AI, Hutchison JL, Green MLH (2002) Chem Commun 13:1319. doi:10.1039/b200537a

    Article  Google Scholar 

  9. Sloan J, Friedrichs S, Meyer RR, Kirkland AI, Hutchison JL, Green MLH (2002) Inorg Chim Acta 330:1. doi:10.1016/S0020-1693(01)00774-5

    Article  CAS  Google Scholar 

  10. Sloan J, Kirkland AI, Hutchison JL, Green MLH (2003) C R Phys 4:1063. doi:10.1016/S1631-0705(03)00102-6

    Article  CAS  Google Scholar 

  11. Philp E, Sloan J, Kirkland AI, Meyer RR, Friedrichs S, Hutchison JL, Green MLH (2003) Nat Mater 2:788. doi:10.1038/nmat1020

    Article  CAS  Google Scholar 

  12. Kirkland AI, Meyer MR, Sloan J, Hutchison JL (2005) Microsc Microanal 11:401. doi:10.1017/S14319276050385

    Article  CAS  Google Scholar 

  13. Hutchison JL, Sloan J, Kirkland AI, Green MLH (2004) J Electron Microsc 53:101. doi:10.1093/jmicro/53.2.101

    Article  CAS  Google Scholar 

  14. Meyer RR, Sloan J, Dunin-Borkowski RE, Kirkland AI, Novotny MC, Bailey SR, Hutchison JL, Green MLH (2000) Science 289:1324. doi:10.1126/science.289.5483.1324

    Article  CAS  Google Scholar 

  15. Friedrichs S, Falke U, Green MLH (2005) ChemPhysChem 6:300. doi:10.1002/cphc.200400361

    Article  CAS  Google Scholar 

  16. Wang ZY, Li H, Liu Z, Shi ZJ, Lu J, Suenaga K, Joung SK, Okazaki T, Gu ZN, Zhou J, Gao ZX, Li GP, Sanvito S, Wang EG, Iijima S (2010) J Am Chem Soc 132:13840. doi:10.1021/ja1058026

    Article  CAS  Google Scholar 

  17. Carter R, Sloan J, Kirkland AI, Meyer RR, Lindan PJD, Lin G, Green MLH, Vlandas A, Hutchison JL, Harding J (2006) Phys Rev Lett 96:215501. doi:10.1002/pssb.200669157

    Article  Google Scholar 

  18. Yashina LV, Eliseev AA, Kharlamova MV, Volykhov AA, Egorov AV, Savilov SV, Lukashin AV, Püttner R, Belogorokhov AI (2011) J Phys Chem C 115:3578. doi:10.1021/jp1107087

    Article  CAS  Google Scholar 

  19. Lu J, Nagase S, Yu DP, Ye H, Han R, Gao Z, Zhang S, Peng L (2004) Phys Rev Lett 93:116804. doi:10.1103/PhysRevLett.93.116804

    Article  Google Scholar 

  20. Li LJ, Khlobystov AN, Wiltshire JG, Briggs GAD, Nicholas RJ (2005) Nat Mater 4:481. doi:10.1038/nmat1396

    Article  CAS  Google Scholar 

  21. Takenobu T, Takano T, Shiraishi M, Murakami Y, Ata M, Kataura H, Achiba Y, Iwasa Y (2003) Nat Mater 2:683. doi:10.1038/nmat976

    Article  CAS  Google Scholar 

  22. Shiozawa H, Pichler T, Kramberger C, Grüneis A, Knupfer M, Büchner B, Zylyomi V, Koltai J, Kürti J, Batchelor D, Kataura H (2008) Phys Rev B 77:153402. doi:10.1103/PhysRevB.77.153402

    Article  Google Scholar 

  23. Hulman M, Kuzmany H, Costa PMFJ, Friedrichs S, Green MLH (2004) Appl Phys Lett 85:2068. doi:10.1063/1.1790

    Article  CAS  Google Scholar 

  24. Thamavaranukup N, Hoppe HA, Ruiz-Gonzalez L, Costa PMFJ, Sloan J, Kirkland A, Green MLH (2004) Chem Commun 15:1686. doi:10.1039/b405956e

    Article  Google Scholar 

  25. Friedrichs S, Meyer RR, Sloan J, Kirkland AI, Hutchison JL, Green MLH (2001) Chem Commun 10:929. doi:10.1039/b102348a

    Article  Google Scholar 

  26. Kharlamova MV, Niu JJ (2012) Appl Phys A 109:25. doi:10.1007/s00339-012-7091-3

    Article  CAS  Google Scholar 

  27. Eliseev AA, Yashina LV, Brzhezinskaya MM, Chernysheva MV, Kharlamova MV, Verbitsky NI, Lukashin AV, Kiselev NA, Kumskov AS, Zakalyuhin RM, Hutchison JL, Freitag B, Vinogradov AS (2010) Carbon 48:2708. doi:10.1016/j.carbon.2010.02.037

    Article  CAS  Google Scholar 

  28. Kharlamova MV, Niu JJ (2012) J Exp Theor Phys 115:485. doi:10.1134/S1063776112080092

    Article  CAS  Google Scholar 

  29. Eliseev AA, Yashina LV, Verbitskiy NI, Brzhezinskaya MM, Kharlamova MV, Chernysheva MV, Lukashin AV, Kiselev NA, Kumskov AS, Freitag B, Generalov AV, Vinogradov AS, Zubavichus YV, Kleimenov E, Nachtegaal M (2012) Carbon 50:4021. doi:10.1016/j.carbon.2012.04.046

    Article  CAS  Google Scholar 

  30. Kharlamova MV, Niu JJ (2012) JETP Lett 95:314. doi:10.1134/S0021364012060057

    Article  CAS  Google Scholar 

  31. Kharlamova MV, Yashina LV, Volykhov AA, Niu JJ, Neudachina VS, Brzhezinskaya MM, Zyubina TS, Belogorokhov AI, Eliseev AA (2012) Eur Phys J B 85:34. doi:10.1140/epjb/e2011-20457-6

    Article  Google Scholar 

  32. Kharlamova MV, Eliseev AA, Yashina LV, Petukhov DI, Liu CP, Wang CY, Semenenko DA, Belogorokhov AI (2010) JETP Lett 91:196. doi:10.1134/S0021364010040089

    Article  CAS  Google Scholar 

  33. Kharlamova MV, Yashina LV, Eliseev AA, Volykhov AA, Neudachina VS, Brzhezinskaya MM, Zyubina TS, Lukashin AV, Tretyakov YuD (2012) Phys Status Solidi B 249:2328. doi:10.1002/pssb.201200060

    Article  CAS  Google Scholar 

  34. Kharlamova MV (2013) Appl Phys A 111:725. doi:10.1007/s00339-013-7639-x

    Article  CAS  Google Scholar 

  35. Kharlamova MV, Yashina LV, Lukashin AV (2013) Appl Phys A 112:297. doi:10.1007/s00339-013-7808-y

  36. Ilie A, Bendall JS, Nagaoka K, Egger S, Nakayama T, Crampin S (2011) ACS Nano 5:2559. doi:10.1021/nn102189w

    Article  CAS  Google Scholar 

  37. Krestinin AV, Kislov MB, Ryabenko AG (2004) In: Gucery S, Gogotsi YG, Kuznetsov V (eds) NATO science series, II. Mathematics, physics and chemistry, vol 169. Kluwer, Dordrecht, p 107

    Google Scholar 

  38. Krestinin AV, Kiselev NA, Raevskii AV, Ryabenko AG, Zakharov DN, Zvereva GI (2003) Eurasian Chem Technol J 5:7

    CAS  Google Scholar 

  39. Dresselhaus MS, Dresselhaus G, Jorio A, Filho AGS, Saito R (2002) Carbon 40:2043. doi:10.1016/S0008-6223(02)00066-0

    Article  CAS  Google Scholar 

  40. Dresselhaus MS, Eklund PC (2000) Adv Phys 49:705. doi:10.1080/000187300413184

    Article  CAS  Google Scholar 

  41. Jorio A, Pimenta M, Filho AS, Saito R, Dresselhaus G, Dresselhaus MS (2003) New J Phys 5:139. doi:10.1088/1367-2630/5/1/139

    Article  Google Scholar 

  42. Fouquet M, Telg H, Maultzsch J, Wu Y, Chandra B, Hone J, Heinz TF, Thomsen C (2009) Phys Rev Lett 102:075501. doi:10.1103/PhysRevLett.102.075501

    Article  Google Scholar 

  43. Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Synth Met 103:2555. doi:10.1016/S0379-6779(98)00278-1

    Article  CAS  Google Scholar 

  44. Kramberger C, Rauf H, Shiozawa H, Knupfer M, Buchner B, Pichler T, Batchelor D, Kataura H (2007) Phys Rev B 75:235437. doi:10.1103/PhysRevB.75.235437

    Article  Google Scholar 

  45. Khomyakov PA, Giovannetti G, Rusu PC, Brocks G, Brink J, Kelly PJ (2009) Phys Rev B 79:195425. doi:10.1103/PhysRevB.79.195425

    Article  Google Scholar 

Download references

Acknowledgements

SWCNTs were synthesized by Dr. A.V. Krestinin (Institute of Problems of Chemical Physics, RAS, Chernogolovka, Russia). Authors thank Dr. J.J. Niu (Drexel University, Philadelphia, USA) for the HRTEM measurements and Dr. M.M. Brzhezinskaya (BESSY II, Berlin, Germany) for experimental help during the NEXAFS measurements. The NEXAFS spectra were measured at the Russian-German beamline as a part of the bilateral program “Russian-German Laboratory at Helmholtz-Zentrum Berlin.” Marianna V. Kharlamova thanks the Austrian Academy of Sciences for a DOC-fFORTE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kharlamova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharlamova, M.V., Yashina, L.V. & Lukashin, A.V. Charge transfer in single-walled carbon nanotubes filled with cadmium halogenides. J Mater Sci 48, 8412–8419 (2013). https://doi.org/10.1007/s10853-013-7653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7653-6

Keywords

Navigation