Skip to main content
Log in

Thermal anti-oxidation treatment of CrNi-steels as studied by EXAFS in reflection mode: the influence of monosilane additions in the gas atmosphere of a continuous annealing furnace

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Surface sensitive, reflection mode EXAFS spectroscopy at the Cr and Fe K-edges was used to study the surfaces of stainless steel (EU alloy grade 1.4301 X5CrNi18-10) after different heat treatments. The thermal treatments were performed in a conveyor belt furnace at temperatures between 600 and 900 °C in different gas atmospheres containing inert carrier gases (N2 or Ar) and different additives such as hydrogen (H2) and monosilane (SiH4). The ex-situ EXAFS results show that the iron and chromium in the steel can only be reduced to a metallic state, if SiH4 was used as a reducing additive for temperatures of 900 °C. Lower temperatures and process atmospheres without silane always result in strongly oxidized steel surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wimmers OJ, Arnoldy P, Moulijn JA (1986) Determination of the reduction mechanism by temperature-programmed reduction: application to small iron oxide (Fe2O3) particles. J Phys Chem 90:1331–1337. doi:10.1021/j100398a025

    Article  Google Scholar 

  2. Jung H, Thompson WJ (1991) Reduction/oxidation of a high loading iron oxide catalyst. J Catal 128:218–230. doi:10.1016/0021-9517(91)90079-J

    Article  Google Scholar 

  3. Somorjai GA (1994) Surface chemistry and catalysis, Chap. 7. Wiley-Interscience, New York

    Google Scholar 

  4. Bach FW, Möhwald K, Holländer U (2010) Physico-chemical aspects of surface activation during fluxless brazing in shielding-gas furnaces. Key Eng Mater 438:73–80. doi:10.4028/www.scientific.net/KEM.438.73

    Article  Google Scholar 

  5. Bach FW, Möhwald K, Holländer U, Roxlau C (2007) SCIB—self-cleaning inert-gas brazing—Ein neues Verfahren zum flussmittelfreien Hartlöten korrosionsbeständiger Konstruktionswerkstoffe, Tagungsband zum 8. Internationalen Kolloquium Hart- und Hochtemperaturlöten und Diffusionsschweißen (LÖT 2007, Aachen, 19–21 Juni 2007), DVS-Berichte, Nr. 243. DVS-Verlag, Düsseldorf, pp 235–241

  6. Holländer U, Bach F-W, Möhwald K (2011) Fluxless brazing of aluminium in a continuous furnace using silane doped process gases. Euro ECAA, conference on aluminium science and technology, 5–7 October 2011, Bremen, Germany. http://www.dgm.de/past/2011/ecaa/

  7. Edstrom JO (1953) The mechanism of reduction of iron oxides. J Iron Steel Inst 175:289–304

    Google Scholar 

  8. Sastri MVC, Viswanath RP, Viswanath B (1982) Studies on the reduction of iron oxide with hydrogen. Int J Hydrogen Energy 7:951–955. doi:10.1016/0360-3199(82)90163-X

    Article  Google Scholar 

  9. Turkdogan ET, Vinters JV (1972) Gaseous reduction of iron oxides: Part III. Reduction-oxidation of porous and dense iron oxides and iron. Metall Trans 3:1561–1574. doi:10.1007/BF02643047

    Article  Google Scholar 

  10. Quets JM, Wadsworth ME, Lewis JR (1960) Kinetics of hydrogen reduction of magnetite. Trans Metal Soc AIME 218:545–550

    Google Scholar 

  11. Tiernan MJ, Barnes PA, Parkes GMB (2001) Reduction of iron oxide catalysts: the investigation of kinetic parameters using rate perturbation and linear heating thermoanalytical techniques. J Phys Chem B 105:220–228. doi:10.1021/jp003189+

    Article  Google Scholar 

  12. Corneille JS, He J-W, Goodman DW (1995) Preparation and characterization of ultra-thin iron oxide films on a Mo(100) surface. Surf Sci 338:211–224. doi:10.1016/0039-6028(95)00567-6

    Article  Google Scholar 

  13. Milosev I, Abels JM, Strehblow H-H, Navinsek B, Metikos-Hukovic M (1996) High temperature oxidation of thin CrN coatings deposited on steel. J Vac Sci Technol A 14(4):2527–2532. doi:10.1116/1.580014

    Article  Google Scholar 

  14. Abels J-M, Strehblow H-H (1997) A surface analytical approach to the high temperature chlorination behaviour of inconel 600 at 700°C. Corros Sci 39:115–132. doi:10.1016/S0010-938X(96)00112-6

    Article  Google Scholar 

  15. Clauberg E, Uebing C, Grabke HJ (1999) Surface segregation on Fe–25%Cr–2%Ni–0.1%Sb single crystals. Surf Sci 433–435:617–621. doi:10.1016/S0039-6028(99)00028-X

    Article  Google Scholar 

  16. Park E, Hüning B, Spiegel M (2005) Evolution of near-surface concentration profiles of Cr during annealing of Fe–15Cr polycrystalline alloy. Appl Surf Sci 249:127–138. doi:10.1016/j.apsusc.2004.11.078

    Article  Google Scholar 

  17. Strehblow H-H, Marcus P (2006) X-ray photoelectron spectroscopy in corrosion research. In: Marcus P, Mansfield F (eds) Corrosion science and engineering. CRC Taylor and Francis, Boca Raton, pp 1–38

    Google Scholar 

  18. Davenport AJ, Sansone M, Bardwell JA, Aldykiewicz AJ Jr, Taube M, Vitus CM (1994) In situ multielement XANES study of formation and reduction of the oxide film on stainless steel. J Electrochem Soc 141:L6–L8. doi:10.1149/1.2054720

    Article  Google Scholar 

  19. Toney MF, Davenport AJ, Oblonsky LJ, Ryan MP, Vitus CM (1997) Atomic structure of the passive oxide film formed on iron. Phys Rev Lett 79:4282–4285. doi:10.1103/PhysRevLett.79.4282

    Article  Google Scholar 

  20. Renaud G (1998) Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering. Surf Sci Rep 32:5–90. doi:10.1016/S0167-5729(98)00005-3

    Article  Google Scholar 

  21. Koningsberger D, Prins R (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York

    Google Scholar 

  22. Parratt LG (1954) Surface studies of solids by total reflection of X-rays. Phys Rev 95:359–369. doi:10.1103/PhysRev.95.359

    Article  Google Scholar 

  23. Heald SM, Chen H, Tranquada JM (1988) Glancing-angle extended X-ray-absorption fine structure and reflectivity studies of interfacial regions. Phys Rev B 38:1016–1026. doi:10.1103/PhysRevB.38.1016

    Article  Google Scholar 

  24. Hüppauff M, Lengeler B (1993) Valency and structure of iridium in anodic iridium oxide films. J Electrochem Soc 140:598–602. doi:10.1149/1.2056127

    Article  Google Scholar 

  25. Lützenkirchen-Hecht D, Wagemaker M, Keil P, van Well AA, Frahm R (2003) Ex situ reflection mode EXAFS at the Ti K-edge of lithium intercalated TiO2 rutile. Surf Sci 538:10–22. doi:10.1016/S0039-6028(03)00722-2

    Article  Google Scholar 

  26. Barrett NT, Gibson PN, Greaves GN, Mackle P, Roberts KJ, Sacchi M (1989) ReflEXAFS investigations of the local atomic structure around Fe during the oxidation of stainless steel. J Phys D 22:542–546. doi:10.1088/0022-3727/22/4/012

    Article  Google Scholar 

  27. Tolan M, Weis T, Wille K, Westphal C (2003) DELTA: synchrotron light in nordrhein-westfalen. Synchrotron Rad News 16:9–11. doi:10.1080/08940880308603005

    Article  Google Scholar 

  28. Lützenkirchen-Hecht D, Wagner R, Szillat S, Hüsecken AK, Istomin K, Pietsch U, Frahm R (2014) The multi-purpose hard X-ray beamline BL10 at the DELTA storage ring. J Synchrotron Rad 21. doi:10.1107/S1600577514006705

  29. Martens G, Rabe P (1981) The extended X-ray absorption fine structure in the reflectivity at the K edge of Cu. J Phys C 14:1523–1534. doi:10.1088/0022-3719/14/10/020

    Article  Google Scholar 

  30. Pizzini S, Roberts KJ, Greaves GN, Harris N, Moore P, Pantos E, Oldman RJ (1989) Instrumentation for glancing angle X-ray absorption spectroscopy on the synchrotron radiation source. Rev Sci Instrum 60:2525–2528. doi:10.1063/1.1140719

    Article  Google Scholar 

  31. Poumellec B, Cortes R, Lagnel F, Tourillon G (1989) A new method to extract the X-ray absorption fine structures from the reflectivity spectra: application to the study of (Ti, Nb)O2 amorphous solid solutions. Physica B 158:282–283. doi:10.1016/0921-4526(89)90286-X

    Article  Google Scholar 

  32. Borthen P, Strehblow H-H (1995) X-ray reflectivity fine structure from homogeneous materials in the hard-energy range. J Phys Condens Mater 7:3779–3787. doi:10.1088/0953-8984/7/19/012

    Article  Google Scholar 

  33. Oddershede J, Christiansen TL, Stahl K, Somers MAJ (2008) EXAFS investigation of low temperature nitrided stainless steel. J Mater Sci 43:5358–5367. doi:10.1007/s10853-008-2791-y

    Article  Google Scholar 

  34. Lützenkirchen-Hecht D, Strehblow H-H (2006) The anodic oxidation of silver in 1 M NaOH: electrochemistry, ex situ XPS and in situ X-ray absorption spectroscopy. Surf Interface Anal 38:686–690. doi:10.1002/sia.2188

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank André Langohr and Felix Weber for the steel sample preparations. This study was financially supported by the MWF NRW. The authors gratefully acknowledge the DELTA machine group for providing reliably synchrotron radiation. We would like to thank S. Balk for his help with the measurements at the beamline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lützenkirchen-Hecht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lützenkirchen-Hecht, D., Wulff, D., Wagner, R. et al. Thermal anti-oxidation treatment of CrNi-steels as studied by EXAFS in reflection mode: the influence of monosilane additions in the gas atmosphere of a continuous annealing furnace. J Mater Sci 49, 5454–5461 (2014). https://doi.org/10.1007/s10853-014-8257-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8257-5

Keywords

Navigation