Skip to main content
Log in

An analytical model for secondary phase dissolution kinetics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An analytical model for dissolution kinetics of secondary phase particles upon isothermal annealing has been proposed. Considering the interactions of solute diffusion fields in front of the secondary phase/matrix interface upon dissolution, a Johnson–Mehl–Avrami type equation, subjected to necessary modification, was derived, in combination with a classic dissolution model for single-particle system. Compared with the semiempirical dissolution models, which are used to fit the experimental results and phase-field method simulation, the current model follows an analogous form, but with the time-dependent kinetic parameters. Distinct from the model fitting work published recently, the current model is derived from the diffusion-controlled transformation theory, while the modeling quality is guaranteed by the physically realistic model parameters. On this basis, the current model calculation leads to a clear relationship between the secondary phase volume fraction and the time. Accordingly, model predictions for isothermal θ′ dissolution in Al–3.0wt%–Cu alloy and silicon dissolution in Al–0.8wt%–Si alloy were performed; good agreement with the published experimental data has been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

C m :

Initial solute concentration in the matrix

C α :

Solute concentration at the interface

C β :

Solute concentration in the secondary phase

D :

Diffusion coefficient of solute atoms

D 0 :

Preexponential factor for diffusion

f :

Volume fraction of the secondary phase

f 0 :

Initial volume fraction of the secondary phase

f eq :

Equilibrium volume fraction of the secondary phase

f t :

Transformed fraction (transformation degree)

k :

Dimensionless parameter related to solute concentrations, C β , C α , and C m

K 0 :

Rate constant

m :

Modified proportional factor

n :

Transformed exponent

Q :

Activation energy for dissolution

Q D :

Activation energy for diffusion

r d :

Decrement of the dissolving particle radius

R :

Radius of the dissolving particle

R 0 :

Initial radius of the dissolving particle

t e :

The total transformation time needed for dissolution

V e :

Extended transformed volume of the secondary phase

x e :

Extended transformed fraction

References

  1. Seiser B, Drautz R, Pettifor DG (2011) TCP phase predictions in Ni-based superalloys: structure maps revisited. Acta Mater 59:749–763

    Article  Google Scholar 

  2. Lo KH, Shek CH, Lai JKL (2009) Recent developments in stainless steels. Mater Sci Eng R 65:39–104

    Article  Google Scholar 

  3. Liu F, Cai Y, Guo XF, Yang GC (2000) Structure evolution in undercooled DD3 single crystal superalloy. Mater Sci Eng A 291:9–16

    Article  Google Scholar 

  4. Fan K, Liu F, Liu XN, Zhang YX, Yang GC, Zhou YH (2008) Modeling of isothermal solid-state precipitation using an analytical treatment of soft impingement. Acta Mater 56:4309–4318

    Article  Google Scholar 

  5. Clavaguera-Mora MT, Clavaguera N, Crespo D, Pradell T (2002) Crystallisation kinetics and microstructure development in metallic systems. Prog Mater Sci 47:559–619

    Article  Google Scholar 

  6. Crespo D, Pradell T, Clavaguera-Mora MT, Clavaguera N (1997) Microstructure evaluation of primary crystallization with diffusion-controlled grain growth. Phys Rev B 55:3435–3444

    Article  Google Scholar 

  7. Pradell T, Crespo D, Clavaguera N, Clavaguera-Mora MT (1998) Diffusion controlled grain growth in primary crystallization: Avrami exponents revisited. J Phys 10:3833–3844

    Google Scholar 

  8. Tkatch VI, Rassolov SG, Moiseeva TN, Popov VV (2005) Analytical description of isothermal primary crystallization kinetics of glasses: Fe85B15 amorphous alloy. J Non Cryst Solids 351:1658–1664

    Article  Google Scholar 

  9. Chen YZ, Yang GC, Liu F, Liu N, Xie H, Zhou YH (2005) Microstrucure evolution in undercooled Fe-7.5 at% Ni alloys. J Cryst Growth 282:490–497

    Article  Google Scholar 

  10. Liu N, Liu F, Yang GC, Chen YZ, Chen D, Yang CL, Zhou YH (2007) Grain refinement of undercooled single-phase Fe70Co30 alloys. Phys B 387:151–155

    Article  Google Scholar 

  11. Ge Yu, Lai YKL, Zhang W (1997) Kinetics of transformation with nucleation and growth mechanism: diffusion-controlled reactions. J Appl Phys 82:4270–4276

    Article  Google Scholar 

  12. Wang HF, Liu F, Zhang T, Yang GC, Zhou YH (2009) Kinetics of diffusion-controlled transformations: application of probability calculation. Acta Mater 57:3072–3083

    Article  Google Scholar 

  13. Roncery LM, Weber S, Theisen W (2011) Nucleation and precipitation kinetics of M23C6 and M2N in an Fe–Mn–Cr–C–N austenitic matrix and their relationship with the sensitization phenomenon. Acta Mater 59:6275–6286

    Article  Google Scholar 

  14. Zheng Y, Zheng YF, Jiang F, Li L, Yang H, Liu YN (2008) Effect of ageing treatment on the transformation behaviour of Ti–50.9 at.% Ni alloy. Acta Mater 56:736–745

    Article  Google Scholar 

  15. Hewitt P, Butler EP (1986) Mechanisms and kinetics of θ′ dissolution in Al-3% Cu. Acta Metall 34:1163–1172

    Article  Google Scholar 

  16. Tundal UH, Ryum N (1992) Dissolution of particles in binary alloys: Part II. Experimental investigation on an Al–Si alloy. Metall Trans A 23:445–449

    Article  Google Scholar 

  17. Katona GL, Erdélyi Z, Beke DL, Dietrich Ch, Weigl F, Boyen HG, Koslowski B, Ziemann P (2005) Experimental evidence for a nonparabolic nanoscale interface shift during the dissolution of Ni into bulk Au(111). Phys Rev B 11:115432-1–115432-5

    Google Scholar 

  18. Milhet X, Arnoux M, Pelosin V, Colin J (2012) On the dissolution of the γ′ phase at the dendritic scale in a rhenium-containing nickel-based single crystal superalloy after high temperature exposure. Metall Mater Trans A 44:2031–2040

    Article  Google Scholar 

  19. Thomas G, Whelan MJ (1961) Observations of precipitation in thin foils of aluminium +4 % copper alloy. Phil Mag 6:1103–1114

    Article  Google Scholar 

  20. Aaron HB (1968) On the kinetics of precipitate dissolution. Metal Sci J 2:192–193

    Article  Google Scholar 

  21. Whelan MJ (1969) On the kinetics of precipitate dissolution. Metal Sci J 3:95–97

    Article  Google Scholar 

  22. Aaron HB, Fainstein D, Kotler GR (1970) Diffusion-limited phase transformations: a comparison and critical evaluation of the mathematical approximations. J Appl Phys 41:4404–4410

    Article  Google Scholar 

  23. Nolfi FV Jr, Shewmon PG, Foster JS (1970) The dissolution kinetics of Fe3C in ferrite—a theory of interface migration. Metall Trans 1:2291–2298

    Article  Google Scholar 

  24. Aaron HB, Kotler GR (1971) Second phase dissolution. Metall Trans 2:393–408

    Article  Google Scholar 

  25. Enomoto M, Nojiri N (1997) Influence of interfacial curvature on the growth and dissolution kinetics of a spherical precipitate. Scripta Mater 36:625–632

    Article  Google Scholar 

  26. Nojiri N, Enomoto M (1995) Diffusion-controlled dissolution of a spherical precipitate in an infinite binary alloy. Scripta Metall Mater 32:787–791

    Article  Google Scholar 

  27. Brown LC (1976) Diffusion controlled dissolution of planar, cylindrical, and spherical precipitates. J Appl Phys 47:449–458

    Article  Google Scholar 

  28. Tanzilli RA, Heckel RW (1968) Numerical solutions to the finite, diffusion-controlled, two phase, moving-interface problem (with planar, cylindrical, and spherical interfaces). Trans AIME 242:2313–2321

    Google Scholar 

  29. Tanzilli RA, Heckel RW (1969) A normalized treatment of the solution of second phase particles. Trans Met Soc AIME 245:1363–1366

    Google Scholar 

  30. Baty DL, Tanzilli RA, Heckel RW (1970) Solution kinetics of CuAl2 in an Al–4Cu alloy. Metall Trans 1:1651–1656

    Article  Google Scholar 

  31. Tundal UH, Ryum N (1992) Dissolution of particles in binary alloys: Part I. Computer simulations. Metall Trans A 23:433–444

    Article  Google Scholar 

  32. Vermolen F, Vuik K, van der Zwaag S (1998) A mathematical model for the dissolution kinetics of Mg2Si-phases in Al–Mg–Si alloys during homogenisation under industrial conditions. Mater Sci Eng A 254:13–32

    Article  Google Scholar 

  33. Chen LQ (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113–140

    Article  Google Scholar 

  34. Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Calphad 32:268–294

    Article  Google Scholar 

  35. Javierre E, Vuik C, Vermolen FJ, Segal A (2007) A level set method for three dimensional vector Stefan problems: dissolution of stoichiometric particles in multi-component alloys. J Comput Phys 224:222–240

    Article  Google Scholar 

  36. Chen LQ, Wang Y (1996) The continuum field approach to modeling microstructural evolution. JOM 48:13–18

    Article  Google Scholar 

  37. Wang G, Xu DS, Ma N, Zhou N, Payton EJ, Yang R (2009) Simulation study of effects of initial particle size distribution on dissolution. Acta Mater 57:316–325

    Article  Google Scholar 

  38. Ghosh G (2001) Dissolution and interfacial reactions of thin-film Ti/Ni/Ag metallizations in solder joints. Acta Mater 49:2609–2624

    Article  Google Scholar 

  39. Chen Q, Ma N, Wu K, Wang Y (2004) Quantitative phase field modeling of diffusion-controlled precipitate growth and dissolution in Ti–Al–V. Scripta Mater 50:471–476

    Article  Google Scholar 

  40. Kovacevic I, Sarler B (2005) Solution of a phase-field model for dissolution of primary particles in binary aluminum alloys by an r-adaptive mesh-free method. Mater Sci Eng A 413–414:423–428

    Article  Google Scholar 

  41. Cormier J, Milhet X, Mendez J (2007) Effect of very high temperature short exposures on the dissolution of the γ′ phase in single crystal MC2 superalloy. J Mater Sci 42:7780–7786. doi:10.1007/s10853-007-1645-3

    Article  Google Scholar 

  42. Giraud R, Hervier Z, Cormier J, Saint-Martin G, Hamon F, Milhet X, Mendez J (2012) Strain effect on the γ′ dissolution at high temperatures of a nickel-based single crystal superalloy. Metall Mater Trans A 44:131–146

    Article  Google Scholar 

  43. Fukumoto S, Iwasaki Y, Motomura H, Fukuda Y (2012) Dissolution behavior of δ-ferrite in continuously cast slabs of SUS304 during heat treatment. ISIJ Int 52:74–79

    Article  Google Scholar 

  44. Ferro P (2013) A dissolution kinetics model and its application to duplex stainless steels. Acta Mater 61:3141–3147

    Article  Google Scholar 

  45. Mittemeijer EJ (1992) Review: analysis of the kinetics of phase transformations. J Mater Sci 27:3977–3987 10.1007/BF01105093

    Article  Google Scholar 

  46. Christian JW (2002) The theory of transformations in melts and alloys. Pergamon, Oxford

    Google Scholar 

  47. Liu F, Sommer F, Mittemeijer EJ (2004) An analytical model for isothermal and isochronal transformation kinetics. J Mater Sci 39:1621–1634. doi:10.1023/B:JMSC.0000016161.79365.69

    Article  Google Scholar 

  48. Liu F, Yang C, Yang G, Zhou Y (2007) Additivity rule, isothermal and non-isothermal transformations on the basis of an analytical transformation model. Acta Mater 55:5255–5267

    Article  Google Scholar 

  49. Zhang RJ, Jing T, Jie WQ, Liu BC (2006) Phase-field simulation of solidification in multicomponent alloys coupled with thermodynamic and diffusion mobility databases. Acta Mater 54:2235–2239

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Natural Science Foundation of China (Nos. 51134011, 51101122, and 51071127), the National Basic Research Program of China (973 Program, No. 2011CB610403), China National Funds for Distinguished Young Scientists (No. 51125002), the Fundamental Research Fund (Nos. JC20120223), and the 111 Project (No. B08040) of Northwestern Polytechnical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu.

Appendix

Appendix

Analogous to a mathematical treatment in Ref. [47], the extended transformed fraction is reformulated proceeding as follows.

For the two parts x e1 and x e2 in Eq. (34), two corresponding parameters b 1 and b 2 can be chosen in such a way that x e is due to only the first part,

$$ x_{{{\text{e}}1{\prime }}} = \frac{{b_{1} }}{{R_{0}^{3} }} \cdot 3R_{0} \cdot \left( {\sqrt {\frac{k}{\pi }} \cdot \left( {R_{1} - \sqrt {\frac{{kDt_{m} }}{m}} } \right) + \sqrt {R_{1}^{2} - \frac{{kDt_{m} }}{m}} } \right) \cdot \left( {\frac{{\sqrt {kDt_{m} } }}{{\sqrt m \cdot R_{1} + \sqrt {mR_{1}^{2} - kDt_{m} } }} + \sqrt {\frac{k}{\pi }} } \right) \cdot \left( {\frac{{kDt_{m} }}{m}} \right)^{\frac{1}{2}} $$
(A.1)

Or that x e is due to only the second part,

$$ x_{{{\text{e}}2{\prime }}} = \frac{{b_{2} }}{{R_{0}^{3} }} \cdot \left( {\frac{{\sqrt {kDt_{m} } }}{{\sqrt m \cdot R_{1} + \sqrt {mR_{1}^{2} - kDt_{m} } }} + \sqrt {\frac{k}{\pi }} } \right)^{3} \cdot \left( {\frac{{kDt_{m} }}{m}} \right)^{\frac{3}{2}} $$
(A.2)

With x e1′ = x e2′ = x e. Then, the total extended transformed fraction can be written as,

$$ x_{\text{e}} = \frac{1}{{a_{1} + a_{2} }}\left( {a_{1} \cdot x_{e1'} + a_{2} \cdot x_{{{\text{e}}2{\prime }}} } \right) $$
(A.3)

And

$$ \left\{ \begin{aligned} b_{1} & = & 1 + \frac{{a_{2} }}{{a_{1} }} \\ b_{2} & = & 1 + \left( {\frac{{a_{2} }}{{a_{1} }}} \right)^{ - 1} \\ \end{aligned} \right. $$
(A.4)

During dissolution, it can be seen that both x e1 and x e2 are positive and smaller than x e. Always two integers, a 1 and a 2, can be found to satisfy Eq. (35). Moreover, for integers, a 1 and a 2, it holds that \( a_{1} x_{{{\text{e}}1'}} = \sum\nolimits_{i = 1}^{{a_{1} }} {x_{{{\text{e}}1}} (i)} \) if x e1(1) = x e1(2) = …··· = x e1(a 1) = x e1′; and \( a_{2} x_{{{\text{e}}2{\prime }}} = \sum\nolimits_{i = 1}^{{a_{2} }} {x_{{{\text{e}}2}} (i)} \) if x e2(1) = x e2(2) = …··· = x e2(a 2) = x e2′. Then, taking both x e1(i) and x e2(i) equal to x e, Eq. (A.3) can be rewritten as,

$$ x_{\text{e}} = \frac{1}{{a_{1} + a_{2} }}\left( {\sum\nolimits_{i = 1}^{{a_{1} }} {x_{{{\text{e}}1}} (i)} + \sum\nolimits_{i = 1}^{{a_{2} }} {x_{{{\text{e}}2}} (i)} } \right) $$
(A.5)

Note that all fraction terms in Eq. (A.5) are equal. Substituting all x e1(i) and x e2(i) combined with Eqs. (A.1), (A.2) and (A.4), Eq. (A.5) becomes,

$$ x_{\text{e}} = \left\{ \begin{gathered} \frac{1}{{R_{0}^{3} }} \cdot \left( {\frac{{kDt_{m} }}{m}} \right)^{{\frac{1}{2} + \frac{1}{{1 + \left( {\frac{{a_{2} }}{{a_{1} }}} \right)^{ - 1} }}}} \cdot \left( {\frac{{\sqrt {kDt_{m} } }}{{\sqrt m \cdot R_{1} + \sqrt {mR_{1}^{2} - kDt_{m} } }} + \sqrt {\frac{k}{\pi }} } \right)^{{1 + \frac{2}{{1 + \left( {\frac{{a_{2} }}{{a_{1} }}} \right)^{ - 1} }}}} \cdot \left( {1 + \left( {\frac{{a_{2} }}{{a_{1} }}} \right)^{ - 1} } \right)^{{\frac{1}{{1 + \left( {\frac{{a_{2} }}{{a_{1} }}} \right)^{ - 1} }}}} \hfill \\ \left[ {3R_{0} \cdot \left( {\sqrt {\frac{k}{\pi }} \cdot \left( {R_{1} - \sqrt {\frac{{kDt_{m} }}{m}} } \right) + \sqrt {R_{1}^{2} - \frac{{kDt_{m} }}{m}} } \right) \cdot \left( {1 + \frac{{a_{2} }}{{a_{1} }}} \right)} \right]^{{\frac{1}{{1 + \frac{{a_{2} }}{{a_{1} }}}}}} \hfill \\ \end{gathered} \right\} $$
(A.6)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuo, Q., Liu, F., Wang, L. et al. An analytical model for secondary phase dissolution kinetics. J Mater Sci 49, 3066–3079 (2014). https://doi.org/10.1007/s10853-013-8009-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-8009-y

Keywords

Navigation